Skip to main content

Use of Conditional False Alarm Metric in Statistical Process Monitoring

  • Conference paper
  • First Online:
Frontiers in Statistical Quality Control 13 (ISQC 2019)

Abstract

The conditional false alarm rate (CFAR) at a particular time is the probability of a false alarm for an assumed in-control process at that time conditional on no previous false alarm. Only the Shewhart control chart designed with known in-control parameters, or conditioned on the estimated parameters, has a constant conditional false alarm rate. Other types of charts, however, can have their control limits determined in order to have any desired pattern of CFARs. The important advantage of the use of this CFAR metric is when sample sizes, population sizes or other covariate information affecting chart performance vary over time. In these cases, the control limit at a particular time can be obtained through control of the CFAR value after the corresponding covariate value is known. This allows one to control the in-control performance of the chart without the need to model or forecast the covariate values. The approach is illustrated using the risk-adjusted Bernoulli cumulative sum (CUSUM) chart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aminnayeri, M., & Sogandi, F. (2016). A risk adjusted self-starting Bernoulli CUSUM control chart with dynamic probability control limits. AUT Journal of Modeling and Simulation, 48(2), 103–110.

    Google Scholar 

  • Aytaçoǧlu B., Woodall, W. H. (2020). Dynamic probability control limits for CUSUM charts for monitoring proportions with time-varying sample sizes. Quality and Reliability Engineering International, 36, 592–603.

    Google Scholar 

  • Chen, N., Zi, X., & Zou, C. (2016). A distribution-free multivariate control chart. Technometrics, 58(4), 448–459.

    Article  MathSciNet  Google Scholar 

  • Du, L., & Zou, C. (2018). On-line control of false discovery rates for multiple datastreams. Journal of Statistical Planning and Inference, 194, 1–14.

    Article  MathSciNet  Google Scholar 

  • Hawkins, D. M., & Deng, Q. (2010). A nonparametric change-point control chart. Journal of Quality Technology, 42(2), 165–173.

    Article  Google Scholar 

  • Hawkins, D. M., & Zamba, K. (2005a). A change-point model for a shift in variance. Journal of Quality Technology, 37(1), 21–31.

    Article  Google Scholar 

  • Hawkins, D. M., & Zamba, K. (2005b). Statistical process control for shifts in mean or variance using a changepoint formulation. Technometrics, 47(2), 164–173.

    Article  MathSciNet  Google Scholar 

  • Hawkins, D. M., Qiu, P., & Kang, C. W. (2003). The changepoint model for statistical process control. Journal of Quality Technology, 35(4), 355–366.

    Article  Google Scholar 

  • Holland, M. D., & Hawkins, D. M. (2014). A control chart based on a nonparametric multivariate change-point model. Journal of Quality Technology, 46(1), 63–77.

    Article  Google Scholar 

  • Huang, W., Shu, L., Woodall, W. H., & Tsui, K. L. (2016). CUSUM procedures with probability control limits for monitoring processes with variable sample sizes. IIE Transactions, 48(8), 759–771.

    Article  Google Scholar 

  • Margavio, T. M., Conerly, M. D., Woodall, W. H., & Drake, L. G. (1995). Alarm rates for quality control charts. Statistics and Probability Letters, 24(3), 219–224.

    Article  Google Scholar 

  • Morais, M. C., & Pacheco, A. (2012). A note on the aging properties of the run length of Markov-type control charts. Sequential Analysis, 31(1), 88–98.

    Article  MathSciNet  Google Scholar 

  • Nishina, K., & Nishiyuki, S. (2003). False alarm probability function of CUSUM charts. Economic Quality Control, 18(1), 101–112.

    Article  MathSciNet  Google Scholar 

  • Nishina, K., Kuzuya, K., & Ishii, N. (2006). Reconsidering control charts in Japan. Frontiers in statistical quality control 8 (pp. 136–150). Springer.

    Google Scholar 

  • Shen, X., Zou, C., Jiang, W., & Tsung, F. (2013). Monitoring Poisson count data with probability control limits when sample sizes are time varying. Naval Research Logistics (NRL), 60(8), 625–636.

    Article  MathSciNet  Google Scholar 

  • Shen, X., Tsui, K. L., Zou, C., & Woodall, W. H. (2016). Self-starting monitoring scheme for Poisson count data with varying population sizes. Technometrics, 58(4), 460–471.

    Article  MathSciNet  Google Scholar 

  • Sogandi, F., Aminnayeri, M., Mohammadpour, A., & Amiri, A. (2019). Risk-adjusted Bernoulli chart in multi-stage healthcare processes based on state-space model with a latent risk variable and dynamic probability control limits. Computers and Industrial Engineering, 130, 699–713.

    Article  Google Scholar 

  • Steiner, S. H., Cook, R. J., Farewell, V. T., & Treasure, T. (2000). Monitoring surgical performance using risk-adjusted cumulative sum charts. Biostatistics, 1(4), 441–452.

    Article  Google Scholar 

  • Tang, X., Gan, F. F., & Zhang, L. (2015). Risk-adjusted cumulative sum charting procedure based on multiresponses. Journal of the American Statistical Association, 110(509), 16–26.

    Article  MathSciNet  Google Scholar 

  • Woodall, W. H. (2007). Current research on profile monitoring. Production, 17(3), 420–425.

    Article  MathSciNet  Google Scholar 

  • Woodall, W. H., & Faltin, F. (2019). Rethinking control chart design and evaluation. Quality Engineering, 31(4), 596–605.

    Article  Google Scholar 

  • Woodall, W. H., & Montgomery, D. C. (1999). Research issues and ideas in statistical process control. Journal of Quality Technology, 31(4), 376–386.

    Article  Google Scholar 

  • Yang, W., Zou, C., & Wang, Z. (2017). Nonparametric profile monitoring using dynamic probability control limits. Quality and Reliability Engineering International, 33(5), 1131–1142.

    Article  Google Scholar 

  • Zamba, K., & Hawkins, D. M. (2006). A multivariate change-point model for statistical process control. Technometrics, 48(4), 539–549.

    Article  MathSciNet  Google Scholar 

  • Zamba, K., & Hawkins, D. M. (2009). A multivariate change-point model for change in mean vector and/or covariance structure. Journal of Quality Technology, 41(3), 285–303.

    Article  Google Scholar 

  • Zhang, X., & Woodall, W. H. (2015). Dynamic probability control limits for risk-adjusted Bernoulli CUSUM charts. Statistics in Medicine, 34(25), 3336–3348.

    Article  MathSciNet  Google Scholar 

  • Zhang, X., & Woodall, W. H. (2017a). Dynamic probability control limits for lower and two-sided risk-adjusted Bernoulli CUSUM charts. Quality and Reliability Engineering International, 33(3), 607–616.

    Article  Google Scholar 

  • Zhang, X., & Woodall, W. H. (2017b). Reduction of the effect of estimation error on in-control performance for risk-adjusted Bernoulli CUSUM chart with dynamic probability control limits. Quality and Reliability Engineering International, 33(2), 381–386.

    Article  Google Scholar 

  • Zhang, X., Loda, J. B., & Woodall, W. H. (2017). Dynamic probability control limits for risk-adjusted CUSUM charts based on multiresponses. Statistics in Medicine, 36(16), 2547–2558.

    Article  MathSciNet  Google Scholar 

  • Zhou, C., Zou, C., Zhang, Y., & Wang, Z. (2009). Nonparametric control chart based on change-point model. Statistical Papers, 50(1), 13–28.

    Article  MathSciNet  Google Scholar 

  • Zou, C., & Tsung, F. (2010). Likelihood ratio-based distribution-free EWMA control charts. Journal of Quality Technology, 42(2), 174–196.

    Article  Google Scholar 

  • Zou, C., Zhang, Y., & Wang, Z. (2006). A control chart based on a change-point model for monitoring linear profiles. IIE Transactions, 38(12), 1093–1103.

    Article  Google Scholar 

  • Zou, C., Qiu, P., & Hawkins, D. (2009). Nonparametric control chart for monitoring profiles using change point formulation and adaptive smoothing. Statistica Sinica, 19, 1337–1357.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to an anonymous referee for insightful comments that have improved the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Woodall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Driscoll, A.R., Woodall, W.H., Zou, C. (2021). Use of Conditional False Alarm Metric in Statistical Process Monitoring. In: Knoth, S., Schmid, W. (eds) Frontiers in Statistical Quality Control 13. ISQC 2019. Frontiers in Statistical Quality Control. Springer, Cham. https://doi.org/10.1007/978-3-030-67856-2_1

Download citation

Publish with us

Policies and ethics