Skip to main content

Contrastive Learning in Frequency Domain for Non-I.I.D. Image Classification

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12572))

Included in the following conference series:

Abstract

Non-I.I.D. image classification is an important research topic for both academic and industrial communities. However, it is a very challenging task, as it violates the famous hypothesis of independent and identically distributed (I.I.D.) in conventional machine learning, and the classifier minimizing empirical errors on training images does not perform well on testing images. In this work, we propose a novel model called Contrastive Learning in Frequency Domain (CLFD) to learn invariant representations for Non-I.I.D. image classification. In CLFD, model learning includes two steps: contrastive learning in the frequency domain for pre-training, and image classification with fine-tuning. In the first pre-training step, anchor, positive and negative images are transformed by Discrete Cosine Transform (DCT) and then projected into vector space. This step is to obtain stable invariant features by minimizing the contrastive loss. In the step of image classification with fine-tuning, the features from ResNet are mapped into the label space by a simple fully connected layer, and the classification loss is utilized to fine-tune the parameters in the ResNet. Extensive experiments conducted on public NICO dataset demonstrate the effectiveness of the proposed CLFD, which outperforms the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE Trans. Comput. C-23(1), 90–93 (1974)

    Google Scholar 

  2. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709 (2020)

  3. Ehrlich, M., Davis, L.S.: Deep residual learning in the jpeg transform domain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  4. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 1180–1189. PMLR, Lille, France, 07–09 Jul 2015

    Google Scholar 

  5. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D.: Domain generalization for object recognition with multi-task autoencoders. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), December 2015

    Google Scholar 

  6. Gueguen, L., Sergeev, A., Kadlec, B., Liu, R., Yosinski, J.: Faster neural networks straight from JPEG. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31, pp. 3933–3944. Curran Associates, Inc. (2018)

    Google Scholar 

  7. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 1735–1742 (2006)

    Google Scholar 

  8. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  10. He, Y., Shen, Z., Cui, P.: Towards non-I.I.D. image classification: a dataset and baselines. Pattern Recogn. 110, 07383 (2020)

    Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates, Inc. (2012)

    Google Scholar 

  12. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  13. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: International conference on machine learning, pp. 2208–2217 (2017)

    Google Scholar 

  14. van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv, arXiv-1807 (2018)

    Google Scholar 

  15. Shen, Z., Cui, P., Kuang, K., Li, B., Chen, P.: Causally regularized learning with agnostic data selection bias. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 411–419, MM 2018. Association for Computing Machinery, New York (2018)

    Google Scholar 

  16. Shen, Z., Cui, P., Zhang, T., Kuang, K.: Stable learning via sample reweighting. In: AAAI, pp. 5692–5699 (2020)

    Google Scholar 

  17. Torfason, R., Mentzer, F., Ágústsson, E., Tschannen, M., Timofte, R., Gool, L.V.: Towards image understanding from deep compression without decoding. In: International Conference on Learning Representations (2018)

    Google Scholar 

  18. Watson, A.B.: Image compression using the discrete cosine transform. Math. J. 4(1), 81 (1994)

    MathSciNet  Google Scholar 

  19. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  20. Xu, K., Qin, M., Sun, F., Wang, Y., Chen, Y.K., Ren, F.: Learning in the frequency domain. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Natural Science Foundation of China under Grants 61802053 and 61772436, the Sichuan Science and Technology Program under Grant 2020YJ0037 and 2020YJ0207, the Foundation for Department of Transportation of Henan Province under Grant 2019J-2-2, and the Fundamental Research Funds for the Central Universities under Grant 2682019CX62.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoquan Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shao, H., Yuan, Z., Peng, X., Wu, X. (2021). Contrastive Learning in Frequency Domain for Non-I.I.D. Image Classification. In: Lokoč, J., et al. MultiMedia Modeling. MMM 2021. Lecture Notes in Computer Science(), vol 12572. Springer, Cham. https://doi.org/10.1007/978-3-030-67832-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67832-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67831-9

  • Online ISBN: 978-3-030-67832-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics