Skip to main content

Augmented Reality for Remote Assistance (ARRA)

  • Chapter
  • First Online:
Springer Handbook of Augmented Reality

Abstract

Augmented Reality (AR) reduces the technicians’ cognitive effort mainly resulting in both time and error rate reductions. Still, its application in remote assistance has not been fully explored yet. This paper focuses on understanding the benefits of providing assistance to a remote technician through AR. Augmented Reality for Remote Assistance (ARRA) has been designed and developed for local novice maintainer to request assistance and communicate with a remote expert. The remote expert can manipulate virtual objects, which are then overlaid on the real environment of the novice maintainer. ARRA has been tested with the help of 60 participants. This involved performing an assembly/disassembly operation on a mock-up of a piping system. The participants were remotely assisted through ARRA or video-call. Quantitative spatial referencing error data has been collected. The results showed a 30% improvement in terms of spatial referencing when utilizing ARRA as remote assistance support as opposed to video-call. Future studies should investigate into quantifying the improvements due to other factors involved in remote assistance, especially language barriers and connectivity issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu, J., Ong, S.K., Nee, A.Y.C.: A context-aware augmented reality system to assist the maintenance operators. Int. J. Interact. Des. Manuf. 8, 293–304 (2014). https://doi.org/10.1007/s12008-013-0199-7

    Article  Google Scholar 

  2. Masoni, R., Ferrise, F., Bordegoni, M., Gattullo, M., Uva, A.E., Fiorentino, M., Carrabba, E., Di Donato, M.: Supporting remote maintenance in industry 4.0 through augmented reality. Procedia Manuf. 11, 1296–1302 (2017). https://doi.org/10.1016/j.promfg.2017.07.257

    Article  Google Scholar 

  3. Azuma, R.T.: A survey of augmented reality. Presence Teleoperators Virtual Environ. 6, 355–385 (1997). https://doi.org/10.1162/pres.1997.6.4.355

    Article  Google Scholar 

  4. Azuma, R., et al.: Recent advances in augmented reality. In: IEEE Comput. Graph. Appl, pp. 34–47 (2011)

    Google Scholar 

  5. Abramovici, M., Wolf, M., Adwernat, S., Neges, M.: Context-aware maintenance support for augmented reality assistance and synchronous multi-user collaboration. Procedia CIRP. 59, 18–22 (2017). https://doi.org/10.1016/j.procir.2016.09.042

    Article  Google Scholar 

  6. Neumann, U., Majoros, A.: Cognitive, performance, and systems issues for augmented reality applications in manufacturing and maintenance. In: Proc. – Virtual Real. Annu. Int. Symp, pp. 4–11 (1998). https://doi.org/10.1109/vrais.1998.658416

    Chapter  Google Scholar 

  7. Haritos, T., Macchiarella, N.D.: A mobile application of augmented reality for aerospace maintenance training. AIAA/IEEE Digit. Avion. Syst. Conf. – Proc. 1, 1–9 (2005). https://doi.org/10.1109/DASC.2005.1563376

    Article  Google Scholar 

  8. Mura, M.D., Dini, G., Failli, F.: An integrated environment based on augmented reality and sensing device for manual assembly workstations. Procedia CIRP. 41, 340–345 (2016). https://doi.org/10.1016/j.procir.2015.12.128

    Article  Google Scholar 

  9. Funk, M., Kritzler, M., Michahelles, F.: HoloCollab: a shared virtual platform for physical assembly training using spatially-aware head-mounted displays. ACM Int. Conf. Proc. Ser. (2017). https://doi.org/10.1145/3131542.3131559

  10. Oda, O., Elvezio, C., Sukan, M., Feiner, S., Tversky, B.: Virtual replicas for remote assistance in virtual and augmented reality. In: UIST 2015 – Proc. 28th Annu. ACM Symp. User Interface Softw. Technol, pp. 405–415 (2015). https://doi.org/10.1145/2807442.2807497

    Chapter  Google Scholar 

  11. Palmarini, R., Erkoyuncu, J.A., Roy, R., Torabmostaedi, H.: A systematic review of augmented reality applications in maintenance. Robot. Comput. Integr. Manuf. 49, 215–228 (2018). https://doi.org/10.1016/j.rcim.2017.06.002

    Article  Google Scholar 

  12. Nee, A.Y.C., Ong, S.K., Chryssolouris, G., Mourtzis, D.: Augmented reality applications in design and manufacturing. CIRP Ann. – Manuf. Technol. 61, 657–679 (2012). https://doi.org/10.1016/j.cirp.2012.05.010

    Article  Google Scholar 

  13. Van Krevelen, D.W.F., Poelman, R.: A survey of Augmented Reality technologies, applications and limitations. Int. J. Virtual Real. 9, 1–20 (2010). https://doi.org/10.20870/ijvr.2010.9.2.2767

    Article  Google Scholar 

  14. Wang, X., Love, P.E.D., Kim, M.J., Wang, W.: Mutual awareness in collaborative design: an Augmented Reality integrated telepresence system. Comput. Ind. 65, 314–324 (2014). https://doi.org/10.1016/j.compind.2013.11.012

    Article  Google Scholar 

  15. Wang, M.J., Tseng, C.H., Shen, C.Y.: An easy to use augmented reality authoring tool for use in examination purpose. IFIP Adv. Inf. Commun. Technol. 332, 285–288 (2010). https://doi.org/10.1007/978-3-642-15231-3_31

    Article  Google Scholar 

  16. Bottecchia, S., Cieutat, J.M., Jessel, J.P.: T.A.C: augmented reality system for collaborative tele-assistance in the field of maintenance through internet. In: ACM Int. Conf. Proceeding Ser (2010). https://doi.org/10.1145/1785455.1785469

    Chapter  Google Scholar 

  17. Bordegoni, M., Ferrise, F., Carrabba, E., Di Donato, M., Fiorentino, M., Uva, A.E.: An application based on Augmented Reality and mobile technology to support remote maintenance. Conf. Exhib. Eur. Assoc. Virtual Augment. Real. 1, 131–135 (2014). https://doi.org/10.2312/eurovr.20141351

    Article  Google Scholar 

  18. Cologni, A.L., Fasanotti, L., Dovere, E., Previdi, F., Bonfanti, S., Owen, F.C.: Smartphone based video-telemetry logger for remote maintenance services. IFAC-PapersOnLine. 28, 822–827 (2015). https://doi.org/10.1016/j.ifacol.2015.06.185

    Article  Google Scholar 

  19. Mourtzis, D., Vlachou, A., Zogopoulos, V.: Cloud-based augmented reality remote maintenance through shop-floor monitoring: a product-service system approach. J. Manuf. Sci. Eng. Trans. ASME. 139, 1–11 (2017). https://doi.org/10.1115/1.4035721

    Article  Google Scholar 

  20. Erkoyuncu, J.A., del Amo, I.F., Dalle Mura, M., Roy, R., Dini, G.: Improving efficiency of industrial maintenance with context aware adaptive authoring in augmented reality. CIRP Ann. – Manuf. Technol. 66, 465–468 (2017). https://doi.org/10.1016/j.cirp.2017.04.006

    Article  Google Scholar 

  21. Csurka, G., Kraus, M., Laramee, R.S., Richard, P., Braz, J.: Computer Vision, Imaging and Computer Graphics – Theory and Applications. Springer Berlin Heidelberg (2012)

    Google Scholar 

  22. Knöpfle, C., Weidenhausen, J., Chauvigné, L., Stock, I.: Template based authoring for AR based service scenarios. In: Proc. – IEEE Virtual Real, pp. 237–240 (2005). https://doi.org/10.1109/vr.2005.1492779

    Chapter  Google Scholar 

  23. Yu, L., Ong, S.K., Nee, A.Y.C.: A tracking solution for mobile augmented reality based on sensor-aided marker-less tracking and panoramic mapping. Multimed. Tools Appl. 75, 3199–3220 (2016). https://doi.org/10.1007/s11042-014-2430-3

    Article  Google Scholar 

  24. Wikikart99: Piping ystem on a chemical tanker, https://commons.wikimedia.org/wiki/File:A_UPW_Installation_using_PVDF_Piping.png. Last accessed 03 Sept 2020

  25. Cozanet, H.: A UPW Installation using PVDF Piping, https://commons.wikimedia.org/wiki/File:Piping_system_on_a_chemical_tanker.jpg. Last accessed 03 Sept 2020

  26. Tang, A., Owen, C., Biocca, F., Mou, W.: Experimental evaluation of augmented reality in object assembly task. In: Proc. – Int. Symp. Mix. Augment. Reality, ISMAR 2002, pp. 265–266 (2002). https://doi.org/10.1109/ISMAR.2002.1115105

    Chapter  Google Scholar 

  27. Fiorentino, M., Uva, A.E., Gattullo, M., Debernardis, S., Monno, G.: Augmented reality on large screen for interactive maintenance instructions. Comput. Ind. 65, 270–278 (2014). https://doi.org/10.1016/j.compind.2013.11.004

    Article  Google Scholar 

  28. Henderson, S., Feiner, S.: Exploring the benefits of augmented reality documentation for maintenance and repair. IEEE Trans. Vis. Comput. Graph. 17, 1355–1368 (2011). https://doi.org/10.1109/TVCG.2010.245

    Article  Google Scholar 

Download references

Acknowledgments

This research is sponsored by HSSMI – High Speed Sustainable Manufacturing Institute available at https://www.hssmi.org.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Ahmet Erkoyuncu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Palmarini, R., del Amo, I.F., Ariansyah, D., Erkoyuncu, J.A., Roy, R. (2023). Augmented Reality for Remote Assistance (ARRA). In: Nee, A.Y.C., Ong, S.K. (eds) Springer Handbook of Augmented Reality. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-67822-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67822-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67821-0

  • Online ISBN: 978-3-030-67822-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics