Skip to main content

An Augmented Reality Platform for Interactive Finite Element Analysis

  • Chapter
  • First Online:
Springer Handbook of Augmented Reality

Part of the book series: Springer Handbooks ((SHB))

Abstract

Finite element analysis (FEA) is usually carried out off-site and using computer desktops, i.e., computer-generated graphics, which does not promote a user’s perception and interaction and limits its applications. This chapter first gives an overview of related FEA and AR technologies and presents the feasibility of enhancing finite element structural analysis with AR technology. A novel system has been proposed which integrates sensor measurement, FEA simulation, and scientific visualization into an AR-based environment. This system can acquire input data using sensors and visualize FEA results directly on real-world objects. Several intuitive interaction methods have been developed for enhancing structural investigation and data exploration. A prototype system has been built and tested using several case studies to validate the proposed methods and evaluate the system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azuma, R.T.: A survey of augmented reality. Presence Teleoperator Virt. Environ. 6(4), 355–385 (1997)

    Google Scholar 

  2. P. Milgram, H. Takemura, A. Utsumi, F. Kishino: Augmented reality: A class of displays on the reality-virtuality continuum, Proc. SPIE Telemanipulator and Telepresence Technologies, vol. 2351, Boston, United States, October 31-November 1, 1994, pp. 282–292

    Google Scholar 

  3. Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., MacIntyre, B.: Recent advances in augmented reality. Comp. Graph. Appl. 21(6), 34–47 (2001)

    Google Scholar 

  4. Scherer, S., Wabner, M.: Advanced visualization for finite elements analysis in virtual reality environments. Int. J. Interact. Des. Manuf. 2(3), 169–173 (2008)

    Google Scholar 

  5. Hafner, M., Schoning, M., Antczak, M., Demenko, A., Hameyer, K.: Interactive postprocessing in 3D electromagnetics. IEEE Trans. Magn. 46(8), 3437–3440 (2010)

    Google Scholar 

  6. Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit: an Object-Oriented Approach to 3D Graphics, 4th edn. Kitware, New York (2006)

    Google Scholar 

  7. Lee, E.-J., El-Tawil, S.: FEMvrml: an interactive virtual environment for visualization of finite element simulation results. Adv. Eng. Softw. 39(9), 737–742 (2008)

    Google Scholar 

  8. Ingrassia, T., Cappello, F.: VirDe: a new virtual reality design approach. Int. J. Interact. Des. Manuf. 3(1), 1–11 (2009)

    Google Scholar 

  9. Setareh, M., Bowman, D.A., Kalita, A.: Development of a virtual reality structural analysis system. J. Archit. Eng. 11(4), 156–164 (2005)

    Google Scholar 

  10. A. Liverani, F. Kuester, B. Hamann: Towards interactive finite element analysis of shell structures in virtual reality. Proc. IEEE International Conference on Information Visualization, London, UK, July 14–16, 1999, pp. 340–346

    Google Scholar 

  11. Hambli, R., Chamekh, A., Salah, H.B.H.: Real-time deformation of structure using finite element and neural networks in virtual reality applications. Finite Elem. Anal. Des. 42(11), 985–991 (2006)

    Google Scholar 

  12. Connell, M., Tullberg, O.: A framework for immersive FEM visualization using transparent object communication in a distributed network environment. Adv. Eng. Softw. 33(7), 453–459 (2002)

    Google Scholar 

  13. Cheng, T.-M., Tu, T.-H.: A fast parametric deformation mechanism for virtual reality applications. Comput. Ind. Eng. 57(2), 520–538 (2009)

    Google Scholar 

  14. Yeh, T.P., Vance, J.M.: Applying virtual reality techniques to sensitivity-based structural shape design. J. Mech. Des. 120(4), 612–619 (1998)

    Google Scholar 

  15. Ryken, M.J., Vance, J.M.: Applying virtual reality techniques to the interactive stress analysis of a tractor lift arm. Finite Elem. Anal. Des. 35(2), 141–155 (2000)

    MATH  Google Scholar 

  16. D. Rose, K. Bidmon, T. Ertl: Intuitive and interactive modification of large finite element models. Proc. IEEE Visualization, Austin, United States, October 10–15, 2004, pp. 361–368

    Google Scholar 

  17. H. Graf, A. Stork: Virtual reality based interactive conceptual simulations: combining post-processing and linear static simulations. Proc. 5th International Conference on Virtual, Augmented and Mixed Reality, Las Vegas, United States, July 21–26, 2013, pp. 13–22

    Google Scholar 

  18. L. Chen, T.W. Day, W. Tang, N.W. John: Recent developments and future challenges in medical mixed reality. Proc. IEEE International Symposium on Mixed and Augmented Reality, ISMAR, Nantes, France, Oct 9–13, 2017, pp. 123–135

    Google Scholar 

  19. Guha, D., Alotaibi, N.M., Nguyen, N., Gupta, S., McFaul, C., Yang, V.X.X.: Augmented reality in neurosurgery: a review of current concepts and emerging applications. Can. J. Neurol. Sci. 44(3), 235–245 (2017)

    Google Scholar 

  20. Khor, W.S., Baker, B., Amin, K., Chan, A., Patel, K., Wong, J.: Augmented and virtual reality in surgery – the digital surgical environment: applications, limitations and legal pitfalls. Ann. Trans. Med. 4(23), 454 (2016)

    Google Scholar 

  21. Nee, A.Y.C., Ong, S.K., Chryssolouris, G., Mourtzis, D.: Augmented reality applications in design and manufacturing. Ann CIRP. 61(2), 657–679 (2012)

    Google Scholar 

  22. Egger, J., Masood, T.: Augmented reality in support of intelligent manufacturing – a systematic literature review. Comput. Ind. Eng. 140 (2020)

    Google Scholar 

  23. Diao, P.-H., Shih, N.-J.: Trends and research issues of augmented reality studies in architectural and civil engineering education – a review of academic journal publications. Appl. Sci. 9(9), 1–9 1840 (2019)

    Google Scholar 

  24. Cardoso, L.F.S., Mariano, F.C.M.Q., Zorzal, E.R.: A survey of industrial augmented reality. Comput. Ind. Eng. 139, 1–12 (2020)

    Google Scholar 

  25. Green, S.A., Billinghurst, M., Chen, X.Q., Chase, J.G.: Human-robot collaboration: a literature review and augmented reality approach in design. Adv. Robot. Syst. 5(1), 1–18 (2008)

    Google Scholar 

  26. Chen, P., Liu, X.L., Cheng, W., Huang, R.H.: A review of using augmented reality in education from 2011 to 2016. In: Popescu, E., Kinshuk, Khribi, M.K., Huang, R., Jemni, M., Chen, N.-S., Sampson, D.G. (eds.) Innovations in Smart Learning, pp. 13–18. Springer Nature, Berlin (2017)

    Google Scholar 

  27. Yuliono, T., Sarwanto, Rintayati, P.: The promising roles of augmented reality in educational setting: a review of the literature. Int. J. Educ. Methodol. 4(3), 125–132 (2018)

    Google Scholar 

  28. Karakus, M., Ersozlu, A., Clark, A.C.: Augmented reality research in education: a bibliometric study. Eurasia J. Math. Sci. Technol. Educ. 15(10), 1755 (2019)

    Google Scholar 

  29. Weidlich, D., Scherer, S., Wabner, M.: Analyses using VR/AR visualization. IEEE Comput. Graph. Appl. 28(5), 84–86 (2008)

    Google Scholar 

  30. V. Heuveline, S. Ritterbusch, S. Ronnas: Augmented reality for urban simulation visualization. Proc. First International Conference on Advanced Communications and Computation, Barcelona, Spain, October 23–29, 2011, pp. 115–119

    Google Scholar 

  31. Daponte, P., Vito, L.D., Picariello, F., Riccio, M.: State of the art and future developments of the augmented reality for measurement applications. Measurement. 57, 53–70 (2014)

    Google Scholar 

  32. J. Underkoffler, B. Ullmer, H. Ishii: Emancipated pixels: real-world graphics in the luminous room. Proc. 26th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, United States, August 8–13, 1999, pp. 385–392

    Google Scholar 

  33. F. Niebling, R. Griesser, U. Woessner: Using augmented reality and interactive simulations to realize hybrid prototypes. Proc. 4th International Symposium on Visual Computing, Las Vegas, United States, December 1–3, 2008, pp. 1008–1017

    Google Scholar 

  34. O. Kreylos: Augmented Reality Sandbox. Accessed on January 13, 2016 from http://idav.ucdavis.edu/∼okreylos/ResDev/SARndbox/

  35. H. Kaufmann, B. Meyer: Simulating educational physical experiments in augmented reality. Proc. ACM SIGGRAPH ASIA 2008 Educators Programme, no. 3, Singapore, December 10–13, 2008, pp. 68–75

    Google Scholar 

  36. Valentini, P.P., Pezzuti, E.: Interactive multibody simulation in augmented reality. J. Theor. Appl. Mech. 48(3), 733–750 (2010)

    Google Scholar 

  37. P.P. Valentini, E. Pezzuti: Dynamic splines for interactive simulation of elastic beams in augmented reality. Proc. International Conference on Innovative Methods in Product Design, Venice, Italy, June 15–17, 2011, pp. 89–96

    Google Scholar 

  38. F. Mannus, J. Rubel, C. Wagner, F. Bingel, A. Hinkenjann: Augmenting magnetic field lines for school experiments. Proc. IEEE International Symposium on Mixed and Augmented Reality, Basel, Switzerland, October 26–29, 2011, pp. 263–265

    Google Scholar 

  39. Malkawi, A.M., Srinivasan, R.S.: A new paradigm for human-building interaction: the use of CFD and augmented reality. Autom. Constr. 14(1), 71–84 (2005)

    Google Scholar 

  40. N. Haouchine, J. Dequidt, I. Peterlik, E. Kerrien, M.-O. Berger, S. Coti: Image-guided simulation of heterogeneous tissue deformation for augmented reality during hepatic surgery. Proc. IEEE International Symposium on Mixed and Augmented Reality, Adelaide, Australia, October 1–4, 2013, pp. 199–208

    Google Scholar 

  41. Bernasconi, A., Kharshiduzzaman, M., Anodio, L.F., Bordegoni, M., Re, G.M., Braghin, F., Comolli, L.: Development of a monitoring system for crack growth in bonded single-lap joints based on the strain field and visualization by augmented reality. J. Adhes. 90(5–6), 496–510 (2014)

    Google Scholar 

  42. Fiorentino, M., Monno, G., Uva, A.E.: Interactive ‘touch and see’ FEM simulation using augmented reality. Int. J. Eng. Educ. 25(6), 1124–1128 (2009)

    Google Scholar 

  43. Matsutomo, S., Mitsufuji, K., Hiasa, Y., Noguchi, S.: Real time simulation method of magnetic field for visualization system with augmented reality technology. IEEE Trans. Magn. 49(5), 1665–1668 (2013)

    Google Scholar 

  44. Matsutomo, S., Miyauchi, T., Noguchi, S., Yamashita, H.: Real-time visualization system of magnetic field utilizing augmented reality technology for education. IEEE Trans. Magn. 48(2), 531–534 (2012)

    Google Scholar 

  45. Nealen, A., Muller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based deformable models in computer graphics. Comp. Graph. Forum. 25(4), 809–836 (2006)

    Google Scholar 

  46. Cotin, S., Delingette, H., Ayache, N.: Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans. Visualiz. Comp. Graph. 5(1), 62–73 (1999)

    MATH  Google Scholar 

  47. Bro-Nielsen, M., Cotin, S.: Real-time volumetric deformable models for surgery simulation using finite elements and condensation. Comp. Graph. Forum. 15(3), 57–66 (1996)

    Google Scholar 

  48. I. Nikitin, L. Nikitina, P. Frolov, G. Goebbels, M. Göbel, S. Klimenko, G.M. Nielson: Real-time simulation of elastic objects in virtual environments using finite element method and precomputed Green’s functions. Proc. Eighth Eurographics Workshop on Virtual Environments, Barcelona, Spain, May 30–31, 2002, pp. 47–52

    Google Scholar 

  49. Berkley, J., Turkiyyah, G., Berg, D., Ganter, M., Weghorst, S.: Real-time finite element modeling for surgery simulation: an application to virtual suturing. IEEE Trans. Visualiz. Comp. Graph. 10(3), 314–325 (2004)

    Google Scholar 

  50. Lee, B., Popescu, D.C., Ourselin, S.: Topology modification for surgical simulation using precomputed finite element models based on linear elasticity. Prog. Biophys. Mol. Biol. 103(2–3), 236–251 (2010)

    Google Scholar 

  51. Bathe, K.-J.: Finite Element Procedures. Prentice Hall, Watertown (1996)

    MATH  Google Scholar 

  52. Joldes, G.R., Wittek, A., Miller, K.: Suite of finite element algorithms for accurate computation of soft tissue deformation for surgical simulation. Med. Image Anal. 13(6), 912–919 (2009)

    Google Scholar 

  53. Miller, K., Joldes, G., Lance, D., Wittek, A.: Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Commun. Numer. Methods Eng. 23(2), 121–134 (2007)

    MATH  Google Scholar 

  54. Lapeer, R.J., Gasson, P.D., Karri, V.: A hyperelastic finite element model of human skin for interactive real-time surgical simulation. IEEE Trans. Biomed. Eng. 58(4), 1013–1022 (2011)

    Google Scholar 

  55. M. Müller, J. Dorsey, L. McMillan, R. Jagnow, B. Cutler: Stable real-time deformations. Proc. ACM SIGGRAPH/ Eurographics Symposium on Computer Animation, San Antonio, United States, July 21–22, 2002, pp. 49–54

    Google Scholar 

  56. Courtecuisse, H., Jung, H., Allard, J., Duriez, C., Lee, D.Y., Cotin, S.: GPU-based real-time soft tissue deformation with cutting and haptic feedback. Prog. Biophys. Mol. Biol. 103(2–3), 159–168 (2010)

    Google Scholar 

  57. Allard, J., Cotin, S., Faure, F., Bensoussan, P.-J., Poyer, F., Duriez, C., Delingette, H., Grisoni, L.: SOFA-an open source framework for medical simulation. In: Westwood, J.D., Haluck, R.S., Hoffman, H.M., Mogel, G.T., Philips, R., Robb, R.A., Vosburgh, K.G. (eds.) Medicine Meets Virtual Reality 15, pp. 13–18. IOS Press, Amsterdam (2007)

    Google Scholar 

  58. Sin, F.S., Schroeder, D., Barbic, J.: Vega: non-linear FEM deformable object simulator. Comput. Graph. Forum. 32(1), 36–48 (2013)

    Google Scholar 

  59. Portnoy, S., Yarnitzky, G., Yizhar, Z., Kristal, A., Oppenheim, U., Siev-Ner, I., Gefen, A.: Real-time patient-specific finite element analysis of internal stresses in the soft tissues of a residual limb: a new tool for prosthetic fitting. Ann. Biomed. Eng. 35(1), 120–135 (2007)

    Google Scholar 

  60. Yuan, M.L., Ong, S.K., Nee, A.Y.C.: The virtual interaction panel: an easy control tool in augmented reality systems. Comp. Animat. Virtual Worlds. 15(3–4), 425–432 (2004)

    Google Scholar 

  61. J. Looser, M. Billinghurst, R. Grasset, A. Cockburn: An evaluation of virtual lenses for object selection in augmented reality. Proc. 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia, Perth, Australia, December 1–4, 2007, pp.203-210

    Google Scholar 

  62. Argelaguet, F., Andujar, C.: A survey of 3D object selection techniques for virtual environments. Comput. Graph. 37(3), 121–136 (2013)

    Google Scholar 

  63. J. F. Lucas: Design and evaluation of 3D multiple object selection techniques, Master’s thesis, Virginia Polytechnic Institute and State University, Virginia, United States, 2005

    Google Scholar 

  64. R.B. Haber, D.A. McNabb: Visualization idioms: a conceptual model for scientific visualization systems, in Nielson, G.M. and Shriver, B., Visualization in Scientific Computing, LosAlamitos IEEE Computer Society Press, 1990, 74–93

    Google Scholar 

  65. Santos, S.D., Brodlie, K.: Gaining understanding of multivariate and multidimensional data through visualization. Comput. Graph. 28(3), 311–325 (2004)

    Google Scholar 

  66. G. Debunne, M. Desbrun, M.-P Cani, A.H. Barr: Dynamic real-time deformations using space and time adaptive sampling. Proc. 28th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, United States, August 12–17, 2001, pp. 31–36

    Google Scholar 

  67. Silva, C.W.D.: Vibration and Shock Handbook. CRC Press Taylor and Francis (2005)

    MATH  Google Scholar 

  68. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipe in C: The Pitt Building, Trumpington Street, Cambridge CB2 1RP, United Kingdom (1992)

    Google Scholar 

  69. I.S. Duff, R.G. Grimes, J.G. Lewis: Rutherford Appleton Laboratory, Central Computing Department, Atlas Centre, Oxon OX11 0QX, United Kingdom. Accessed January 14, 2016 from http://www.cs.colostate.edu/∼mcrob/toolbox/c++/sparseMatrix/hbsmc.pdf

  70. J.F. Doyle: Modern Experimental Stress Analysis: completing the solution of partially specified problems. Wiley (2004)

    Google Scholar 

  71. D. Winer: XML-RPC Specification. Accessed January 14, 2016 from http://xmlrpc.scripting.com/spec.html

  72. Hager, W.W.: Updating the inverse of a matrix. SIAM Rev. 31(2), 221–239 (1989)

    MATH  Google Scholar 

  73. Jaishi, B., Ren, W.-X.: Damage detection by finite element model updating using modal flexibility residual. J. Sound Vib. 290(1–2), 369–387 (2006)

    Google Scholar 

  74. Teughels, A., Maeck, J., Roeck, G.D.: Damage assessment by FE model updating using damage functions. Comput. Struct. 80(25), 1869–1879 (2002)

    Google Scholar 

  75. Huang, J.M., Ong, S.K., Nee, A.Y.C.: Real-time finite element structural analysis in augmented reality. Adv. Eng. Softw. 87, 43–56 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, J.M., Ong, S.K., Nee, A.Y.C. (2023). An Augmented Reality Platform for Interactive Finite Element Analysis. In: Nee, A.Y.C., Ong, S.K. (eds) Springer Handbook of Augmented Reality. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-67822-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67822-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67821-0

  • Online ISBN: 978-3-030-67822-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics