Skip to main content

History of Augmented Reality

  • Chapter
  • First Online:
Springer Handbook of Augmented Reality

Abstract

Augmented reality (AR) is emerged in the last decade as a potentially disruptive technology capable of superimposing virtual objects generated by a computer onto the real world surrounding the user. By using see-through displays, AR systems make the user perceive both the real surrounding environment and virtual elements in a consistent way with regard to user point of view and virtual content size. The recent developments of low-cost AR technologies and mixed reality (MR) devices such as Google Glass, Microsoft Hololens, Vuzix, and many others are capturing interest of users and researchers, suggesting that AR could be the next springboard for technological innovation as also highlighted but its inclusion as enabling technology of Industry 4.0 paradigm. However, the AR is not as young as it seems. The concept of AR was formulated in the 1960s, and the first commercial AR tools appeared in the late 1980s. This chapter presents an overview of AR, the historical evolution since its first appearance, its usage in the most relevant domains including the emerging instance of Mobile/Wearable AR applications, the technical challenges in implementing AR systems, as well as main technological and applicative trends for the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azuma, R.T.: A survey of augmented reality (1997). MIT Press, In Presence: Teleoperators and Virtual Environments 6, 4, 355–385 (1997)

    Google Scholar 

  2. Billinghurst, M., Clark, A., Lee, G.: A survey of augmented reality (2015)

    Google Scholar 

  3. Antigny, N., Servières, M., Renaudin, V.: Pedestrian track estimation with handheld monocular camera and inertial-magnetic sensor for urban augmented reality. In: 2017 international conference on indoor positioning and indoor navigation (IPIN), pp. 1–8. IEEE (2017)

    Google Scholar 

  4. Bermúdez, G.S.C., Karnaushenko, D.D., Karnaushenko, D., Lebanov, A., Bischoff, L., Kaltenbrunner, M., … Makarov, D.: Magnetosensitive e-skins with directional perception for augmented reality. Sci. Adv. 4(1), eaao2623 (2018)

    Google Scholar 

  5. Ramamonjy, A., Bavu, E., Garcia, A., Hengy, S.: A distributed network of compact microphone arrays for drone detection and tracking. J. Acoust. Soc. Am. 141(5), 3651–3651 (2017)

    Article  Google Scholar 

  6. Yang, X., Guo, J., Xue, T., Cheng, K.T.T.: Robust and real-time pose tracking for augmented reality on mobile devices. Multimed. Tools Appl. 77(6), 6607–6628 (2018)

    Article  Google Scholar 

  7. Li, P., Qin, T., Hu, B., Zhu, F., Shen, S.: Monocular visual-inertial state estimation for mobile augmented reality. In: 2017 IEEE international symposium on mixed and augmented reality (ISMAR), pp. 11–21. IEEE (2017)

    Chapter  Google Scholar 

  8. Bresson, G., Alsayed, Z., Yu, L., Glaser, S.: Simultaneous localization and mapping: a survey of current trends in autonomous driving. IEEE Trans. Intell. Veh. 2(3), 194–220 (2017)

    Article  Google Scholar 

  9. Pire, T., Fischer, T., Castro, G., De Cristóforis, P., Civera, J., Berlles, J.J.: S-PTAM: stereo parallel tracking and mapping. Robot. Auton. Syst. 93, 27–42 (2017)

    Article  Google Scholar 

  10. Xiao, L., Wang, J., Qiu, X., Rong, Z., Zou, X.: Dynamic-SLAM: semantic monocular visual localization and mapping based on deep learning in dynamic environment. Robot. Auton. Syst. 117, 1–16 (2019)

    Article  Google Scholar 

  11. Liu, Q., Wang, Z., Wang, H.: SD-VIS: a fast and accurate semi-direct monocular visual-inertial simultaneous localization and mapping (SLAM). Sensors. 20(5), 1511 (2020)

    Article  Google Scholar 

  12. Pombo, L., Marques, M.M.: Marker-based augmented reality application for mobile learning in an urban park: steps to make it real under the EduPARK project. In: 2017 international symposium on computers in education (SIIE), pp. 1–5. IEEE (2017)

    Google Scholar 

  13. Sadeghi-Niaraki, A., Choi, S.M.: A survey of marker-less tracking and registration techniques for Health & Environmental Applications to augmented reality and ubiquitous geospatial information systems. Sensors. 20(10), 2997 (2020)

    Article  Google Scholar 

  14. Ma, L., Zhao, Z., Zhang, B., Jiang, W., Fu, L., Zhang, X., Liao, H.: Three-dimensional augmented reality surgical navigation with hybrid optical and electromagnetic tracking for distal intramedullary nail interlocking. Int. J. Med. Rob. Comput. Assisted Surg. 14(4), e1909 (2018)

    Article  Google Scholar 

  15. Rathinavel, K., Wetzstein, G., Fuchs, H.: Varifocal occlusion-capable optical see-through augmented reality display based on focus-tunable optics. IEEE Trans. Vis. Comput. Graph. 25(11), 3125–3134 (2019)

    Article  Google Scholar 

  16. Krajancich, B., Padmanaban, N., Wetzstein, G.: Factored occlusion: single spatial light modulator occlusion-capable optical see-through augmented reality display. IEEE Trans. Vis. Comput. Graph. 26(5), 1871–1879 (2020)

    Article  Google Scholar 

  17. Cattari, N., Cutolo, F., D’amato, R., Fontana, U., Ferrari, V.: Toed-in vs parallel displays in video see-through head-mounted displays for close-up view. IEEE Access. 7, 159698–159711 (2019)

    Article  Google Scholar 

  18. Büttner, S., Prilla, M., Röcker, C.: Augmented reality training for industrial assembly work-are projection-based AR assistive systems an appropriate tool for assembly training? In: Proceedings of the 2020 CHI conference on human factors in computing systems, pp. 1–12 (2020)

    Google Scholar 

  19. Baum, L.F.: The Master Key, ed. by CreateSpace Independent Publishing Platform (2016)

    Google Scholar 

  20. Heilig, M.: Sensorama Simulator, US Patent 3,050,870 (1962)

    Google Scholar 

  21. Rheingold, H.: Virtual Reality. Summit Books (1991)

    MATH  Google Scholar 

  22. Sutherland, I.E.: Sketchpad: A man-machine graphical communication system. In: Proceedings of the AFIPS spring joint computer conference, vol. 23, (1963)

    Google Scholar 

  23. Sutherland, I.E.: The ultimate display. In: Proceedings of the IFIPS congress, vol. 2, (1965)

    Google Scholar 

  24. Furness, T.A.: The super cockpit and its human factors challenges. In: Proceedings of the human factors society, 30th annual meeting (1986)

    Google Scholar 

  25. Myron, W.: Krueger: Responsive environments. In Proceedings of the national computer conference (1977)

    Google Scholar 

  26. EyeTap Personal Imaging Lab. http://www.eyetap.org

  27. Caudell, T.P., Mizell, D.W.: Augmented reality: An application of heads-up display technology to manual manufacturing processes. In: Proceedings of 1992 IEEE Hawaii international conference on systems sciences. IEEE Press (1992)

    Google Scholar 

  28. Rosenberg, L.B.: The use of virtual fixtures as perceptual overlays to enhance operator performance in remote environments, Tech. Rep. (1992 DTIC Document)

    Google Scholar 

  29. Rosenberg, L.B.: Virtual fixtures: Perceptual tools for telerobotic manipulation. In: Virtual reality annual international symposium. IEEE (1993)

    Google Scholar 

  30. Feiner, S., Macintyre, B., Seligmann, D.: Knowledge-based augmented reality. In Commun. ACM. 36(7), 53–62 (1993)

    Article  Google Scholar 

  31. Milgram, P., Kishino, F.: A Taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. E77-D(12(12)), 1321–1329 (1994)

    Google Scholar 

  32. Wikipedia: Augmented Reality. https://en.wikipedia.org/wiki/Augmented_reality

  33. State, A., Chen, D.T., Tector, C., Brandt, A., Chen, H., Ohbuchi, R., Bajura, M., Fuchs, H.: Observing a volume rendered fetus within a pregnant patient, 364–368, CP41 (1994). https://doi.org/10.1109/VISUAL.1994.346295

  34. Rekimoto, J., Ayatsuka, Y.: CyberCode: Designing augmented reality environments with visual tags. In: Proceedings of the 2000 ACM conference on designing augmented reality environments. DARE (2000)

    Google Scholar 

  35. Wikipedia: The Eye of Judgment. https://en.wikipedia.org/wiki/The_Eye_of_Judgment

  36. Wikipedia: 1st & Ten (graphics system). https://en.wikipedia.org/wiki/1st_%26_Ten_(graphics_system)

  37. Kato, H., Billinghurst, M.: Marker tracking and hmd calibration for a video-based augmented reality conferencing system. In: Proceedings of the 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR 99) (1999)

    Google Scholar 

  38. Reitmayr, G., Schmalstieg, D.: Mobile Collaborative Augmented Reality. In: Proceedings of ISAR’01, New York (2001)

    Google Scholar 

  39. Thomas, B.H., Close, B., Donoghue, J., Squires, J., Bondi, P., Piekarski, W.: First person indoor/outdoor augmented reality application: ARQuake. Per. Ubiquit. Comput. 6, 75–86 (2002). https://doi.org/10.1007/s007790200007

    Article  Google Scholar 

  40. Wagner, D., Schmalstieg, D.: First steps towards handheld augmented reality, 127–135 (2005). https://doi.org/10.1109/ISWC.2003.1241402

  41. Moehring, M., Lessig, C., Bimber, O.: Video see-through and optical tracking with consumer cell phones. (2004). https://doi.org/10.1145/1186223.1186357

  42. Wikipedia: OpenGL. https://en.wikipedia.org/wiki/OpenGL

  43. Henrysson, A., Billinghurst, M., Ollila, M.: AR tennis (2006). http://doi.acm.org/10.1145/1179849.1179865. https://doi.org/10.1145/1179133.1179135

  44. Greene, K.: Hyperlinking reality via phones (2006). https://www.technologyreview.com/s/406899/hyperlinking-reality-via-phones/

  45. Wikitude World Browser.: https://www.wikitude.com/wikitude-world-browser-augmented-reality/

  46. Layar.: https://www.layar.com/

  47. Abate, A.F., Guida, M., Leoncini, M.P., Nappi, M., Ricciardi, S.: A haptic-based approach to virtual training for aerospace industry. J. Vis. Lang. Comput. 20(5), 318–325 (2009)

    Article  Google Scholar 

  48. Abate, A.F., Acampora, G., Ricciardi, S.: An interactive virtual guide for the AR based visit of archaeological sites. J. Vis. Lang. Comput. 22(6), 415–425 (2011)

    Article  Google Scholar 

  49. Abate, A.F., Acampora, G., Loia, V., Ricciardi, S., Vasilakos, A.V.: A pervasive visual–haptic framework for virtual delivery training. IEEE Trans. Inf. Technol. Biomed. 14(2), 326–334 (2010)

    Article  Google Scholar 

  50. De Marsico, M., Levialdi, S., Nappi, M., Ricciardi, S.: FIGI: floating interface for gesture-based interaction. J. Ambient. Intell. Humaniz. Comput. 5(4), 511–524 (2014)

    Article  Google Scholar 

  51. Mann, S., Niedzviecki, H.: Cyborg: Digital Destiny and Human Possibility in the Age of the Wearable Computer. Doubleday Canada (2001)

    Google Scholar 

  52. Mann, S., Barfield, W.: Introduction to mediated reality. Int. J. Hum. Comput. Interaction. 15(2), 205–208 (2003)

    Article  Google Scholar 

  53. Grasset, R., Gascuel, J.D.: Interactive mediated reality. In: The second IEEE and ACM international symposium on mixed and augmented reality, 2003. Proceedings, pp. 302–303. IEEE (2003)

    Chapter  Google Scholar 

  54. Poelman, R., Akman, O., Lukosch, S., Jonker, P.: As if being there: mediated reality for crime scene investigation. In: Proceedings of the ACM 2012 conference on computer supported cooperative work, pp. 1267–1276 (2012)

    Chapter  Google Scholar 

  55. Barbatsis, G., Fegan, M., Hansen, K.: The performance of cyberspace: an exploration into computer-mediated reality. J. Comput.-Mediat. Commun. 5(1), JCMC512 (1999)

    Google Scholar 

  56. Scourboutakos, P., Lu, M.H., Nerker, S., Mann, S.: Phenomenologically augmented reality with new wearable led sequential wave imprinting machines. In: Proceedings of the eleventh international conference on tangible, embedded, and embodied interaction, pp. 751–755 (2017)

    Chapter  Google Scholar 

  57. Hu, A.Z., Janzen, R., Lu, M.H., Mann, S.: Liquid jets as logic-computing fluid-user-interfaces. In: Proceedings of the on thematic workshops of ACM multimedia 2017, pp. 469–476 (2017)

    Chapter  Google Scholar 

  58. Mann, S., Havens, J. C., Iorio, J., Yuan, Y., Furness, T.: All reality: values, taxonomy, and continuum, for virtual, augmented, eXtended/MiXed (X), Mediated (X, Y), and Multimediated reality/intelligence. Presented at the AWE 2018 (2018)

    Google Scholar 

  59. Bower, M., Howe, C., McCredie, N., Robinson, A., Grover, D.: Augmented reality in Education – Cases, places, and potentials. Educ. Media Int. 51 (2014). https://doi.org/10.1080/09523987.2014.889400

  60. Narducci, F., Ricciardi, S., Vertucci, R.: Enabling consistent hand-based interaction in mixed reality by occlusions handling, to be published on multimedia tools and applications. Springer

    Google Scholar 

  61. Kipper, G., Rampolla, J.: Augmented reality: An emerging technologies guide to AR, pp. 1–158. Elsevier (2012)

    Google Scholar 

  62. Azuma, R.T.: The most important challenge facing augmented reality. Presence Teleop. Virt. 25(3), 234–238 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work and the research behind it would not have been possible without the non-profit support of Raffaele Vertucci and Salvatore D’Onofrio who shared their knowledge and experiences on the VR/AR technologies gained in their company Leonardo Spa, a leading company in the aerospace industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore D’Onofrio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vertucci, R., D’Onofrio, S., Ricciardi, S., De Nino, M. (2023). History of Augmented Reality. In: Nee, A.Y.C., Ong, S.K. (eds) Springer Handbook of Augmented Reality. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-67822-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67822-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67821-0

  • Online ISBN: 978-3-030-67822-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics