Skip to main content

Geochemical Fingerprinting of Ancient Oceanic Basalts: Classification of the Cuban Ophiolites

  • Chapter
  • First Online:
Geology of Cuba

Part of the book series: Regional Geology Reviews ((RGR))

  • 316 Accesses

Abstract

Mesozoic ophiolites are an important feature of Cuban geology. Although Cuban ophiolites have been studied over the past 40 years, there is still need for systematic studies regarding their internal structure, geochemical characteristics, and emplacement mechanisms. The ophiolites are distributed along the so-called “Northern” and “Eastern” Cuban ophiolite belts, and are strongly dismembered and intermingled mainly with Cretaceous volcanic arc rocks. Ophiolite-associated basalts along the northern Cuban orogenic belt record magmatic history of the ophiolite formation from the Protocaribbean seafloor spreading to subduction initiation stage. We have compiled geochemical data of 15 oceanic basalt samples from previous works, together with data of an analyzed sample during this study. We discuss geochemical criteria based on immobile element proxies for fractionation indices, alkalinity, mantle flow and subduction addition, and field relationships, providing a comprehensive ophiolite classification according to the tectonic setting at which these ophiolites formed. The lavas exhibit three magmatic types. One type has subduction-related fingerprint with dominance of boninite and IAT affinities, likely related to a forearc setting. The second type has a MOR-type (N-MORB and E-MORB) signature, most of them carrying a subtle influence of subduction component, overlapping a border of the backarc field. Subordinately, a transitional type occurs with MOR-type-OIB fingerprint that is considered most likely plume-type ophiolite. The results show then that the studied lavas correspond mostly to subduction-related ophiolite and some of them have incorporated subduction component probably during the time when the Protocaribbean oceanic lithosphere downgoing beneath the Caribbean plate. Some rare remnants of plume-MORB-type ophiolite have also occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BA:

Backarc

CA:

Calc-Alkaline

C-MORB:

Contaminated Middle Ocean Ridge Basalt

ECOB:

Eastern Cuban Ophiolite Belt

E-MORB:

Enriched Middle Ocean Ridge Basalt

FA:

Forearc

FAB:

Forearc Basalt

Fm:

Formation

IAT:

Island Arc Tholeites

ICP-EOS:

Inductively Coupled Plasma Optical Emission Spectrometer

ICP-MS:

Inductively Coupled Plasma Emission Mass Spectrometer

INAA:

Instrumental Neutron Activation Analysis

MOR:

Mid-Ocean Ridge

MORB:

Mid-Ocean Ridge Basalt

My:

Millions of years

N-MORB:

Normal Middle Ocean Ridge Basalt

NCOB:

Northern Cuban Ophiolite Belt

OIB:

Ocean Island Basalt

P-type:

Plume type

REE:

Rare Earth Elements

TAS:

Total Alkali Silica

VA:

Volcanic Arc

WSU:

Washington State University

XRF:

X-ray Fluorescence Spectrometry

References

  1. Andó J, Harangi S, Szkmány l, Dosztály l (1996) Petrología de la asociación ofiolítica de Holguín. In: Iturralde-Vinent MA (ed) Ofiolitas y arcos volcánicos de Cuba. International geological correlation program, Project 364, Special Contribution 1. IUGS/UNESCO, Miami, FL, pp 154–178

    Google Scholar 

  2. Butjosa L, Proenza JA, Aiglsperger T, Rebaza AM, Galindos M, García Casco A, Iturralde Vinent MA, Piñero Pérez E (2014) Layered gabbro-hosted Al-rich chromitites at Loma Iguana area, Camagüey ophiolitic massif, Cuba: originated by crustal recycling?. SGA Meeting, Nancy

    Google Scholar 

  3. Cruz Gámez EM (1993) Papel de vulcanismo básico en la formación de los yacimientos cupro-piríticos de la zona estructuro-facial Bahía Honda. Pinar del río. Tesis para la opción al grado de Doctor en Ciencias Geológicas. Universidad de Pinar del Río, Cuba, pp 1–110

    Google Scholar 

  4. Cruz Gámez EM, Simón Méndez A (1998) Principales rasgos del complejo de basaltos en la región de Bahía Honda, Pinar del Río. Minería y Geología, XIV 3:51–57

    Google Scholar 

  5. Deschamps F, Godard M, Guillot S, Chauvel C, Andreani M, Hattori K, Wunder B, France L (2012) Behavior of fluid-mobile elements in serpentines from abyssal to subduction environments: examples from Cuba and Dominican Republic. Chem Geol 312–313:93–117

    Article  Google Scholar 

  6. Dilek Y, Furnes H (2011) Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol Soc Am Bull 123(3/4):387–411

    Article  Google Scholar 

  7. Dilek Y, Furnes H (2014) Ophiolites and their origins. Elements 10:93–100

    Article  Google Scholar 

  8. Fonseca E (1987) Características de la Asociación Ofiolítica de la Provincia de Pinar del Río. Universidad de Carolina. Praga, Tesis para la opción del grado de Doctor en Ciencias, p 241

    Google Scholar 

  9. Fonseca E, Zelepuguin VM, Heredia M (1984) Particularidades de la estructura de la asociación ofiolítica de Cuba. Ciencia de la Tierra y el Espacio 9:31–46

    Google Scholar 

  10. Fonseca E, González R, Delgado R (1989) Presencia de efusivos ofiolíticos y de boninitas en las provincias de La Habana y Matanzas. Boletín Técnico de Geología 1:1–9

    Google Scholar 

  11. Furnes H, Dilek Y (2017) Geochemical characterization and petrogenesis of intermediate to silicic rocks in ophiolites: A global synthesis. Earth Sci Rev 166:1–37

    Article  Google Scholar 

  12. Geldmacher J, Hoernle KA, Bogaard PVD, Hauff F, Klügel A (2008) Age and geochemistry of the Central American forearc basement (DSDP) Leg 67 and 84): Insights into Mesozoic arc volcanism and seamount accretion on the fringe of the Caribbean LIP. J Petrol 49:1781–1815

    Article  Google Scholar 

  13. Hastie AR, Kerr A, Mitchell S, Millar I (2009) Geochemistry and tectonomagmatic significance of Lower Cretaceous island arc lavas from the Devil’s Race Course Formation, eastern Jamaica. In: James K, Lorente MA, Pindell JL (eds). Origin and evolution of the Caribbean region. Geological Society of London, Special Publication, 328:3999–409

    Google Scholar 

  14. Hastie AR, Mitchell SF, Treloar PJ, Kerr AC, Neill L, Barfod DN (2013) Geochemical components in a Cretaceous island arc: The Th/La-(Ce/Ce*) Nd diagram and implications for subduction initiation in the inter-American region. Lithosphere 162–163:57–69

    Google Scholar 

  15. Iturralde Vinent MA (1981) Nuevo modelo interpretativo de la evolución geológica de Cuba. Rev. Ciencias de la Tierra y el Espacio 3:51–90

    Google Scholar 

  16. Iturralde Vinent MA (1986) Reconstrucción palinspática y paleogeografía del Cretácico Inferior de Cuba oriental y territorios vecinos. Revista Minería y Geología 1:1–4

    Google Scholar 

  17. Iturralde Vinent MA (1988) Composición y edad de los depósitos del fondo oceánico (asociación ofiolítica) del Mesozoico de Cuba, en el ejemplo de Camagüey. Revista Tecnológica, XVIII 3:13–24

    Google Scholar 

  18. Iturralde Vinent MA (1996) Geología de las ofiolitas de Cuba. En: Iturralde-Vinent, M.A. (Ed.). Ofiolitas y arcos volcánicos de Cuba. IGCP Project 364. Special Contribution 1:83–120

    Google Scholar 

  19. Iturralde Vinent MA, Díaz Otero C, Rodriguez Vega A, Díaz Martínez R (2006) Tectonic implications of paleontological dating of Cretaceous-Danian sections of Eastern Cuba. GeolActa 4(1–2):89–102

    Google Scholar 

  20. Kerr AC, Iturralde Vinent M, Saunders AD, Babbs TL, Tarney J (1999) A new plate tectonic model of the caribbean: implications from a geochemical reconnaissance of Cuban Mesozoic volcanic rocks. Geol Soc Am Bull 111:1581–1599

    Article  Google Scholar 

  21. Khudoley KM, Meyerhoff AA (1971) Paleogeography and geological history of Greater Antilles. Geol Soc Am Mem 129:1–199

    Google Scholar 

  22. Lázaro C, Blanco Quintero IF, Proenza JA, Rojas Agramonte Y, Neubauer F, Núñez Cambra K, García Casco A (2016). Petrogenesis and 40Ar/39Ar dating of proto-forearc crust in the Early Cretaceous Caribbean arc: the La Tinta mélange (eastern Cuba) and its easterly correlation in Hispaniola. International Geology Review, pp 1019–1040

    Google Scholar 

  23. Llanes AI, García Delgado D, Meyerhoff D (1998) Hallazgo de fauna jurásica (Tithoniano) en ofiolitas de Cuba central. Memorias de Geología y Minería 98. Centro Nacional de Información Geológica (CNDIG), La Habana, Tomo 2:241–244

    Google Scholar 

  24. Llanes AI, Díaz de Villalvilla L, Despaigne AI, Ronneliah SitalI M, García Jiménez D (2015) Geoquímica de las rocas volcánicas máficas de edad Cretácica de la región de Habana-Matanzas (Cuba occidental): implicaciones paleotectónicas. Ciencias de la Tierra y el Espacio, 16 (2): 117–133. ISSN 1729-3790

    Google Scholar 

  25. Marchesi C, Garrido CJ, Bosch D, Proenza JA, Gervilla F, Monié P, Rodríguez Vega A (2007) Geochemistry of cretaceous magmatism in eastern Cuba: recycling of North American continental sediments and implications for subduction polarity in the Greater Antilles paleo-arc. J Petrol 48(9):1813–1840

    Article  Google Scholar 

  26. Navarrete M, Andó J, Ríos Y y Kozak M (1989) Asociación ofiolítica de Holguín, particularidades petrólogo-geoquímicas. Primer Congreso Cubano de Geología 95

    Google Scholar 

  27. Pearce JA (1996) A User´s Guide to Basalt Discrimination Diagrams. In: Wyman DA (ed) Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geological Association of Canada, Short Course Notes, 12:79–113

    Google Scholar 

  28. Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithosphere 100:14–48

    Google Scholar 

  29. Pearce JA (2014) Immobile element fingerprinting of ophiolites. Elements 10:101–108

    Article  Google Scholar 

  30. Pearce JA and Parkinson IJ (1993) Trace element models for mantle melting: application to volcanic arc petrogenesis. In: Prichard HM, Alabaster T, Harris NBW, Neary CR (Eds.) Magmatic Processes and Plate Tectonics: Geological Society of London, Special Publication, 76:373–403

    Google Scholar 

  31. Proenza JA, Gervilla F, Melgarejo JC, Bodinier JL (1999) Al- and Cr-rich chromitites from the Mayarí-Baracoa Ophiolitic Belt (Eastern Cuba): consequence of interaction between volatile-rich melts and peridotites in suprasubduction mantle. Econ Geol 94:547–566

    Article  Google Scholar 

  32. Proenza JA, García Casco A, Marchesi C, Rojas Agramonte Y, Lázaro C, Blanco Quintero I, Butjosa L, Llanes AI (2016) Petrology, geochemistry and tectonic setting of ophiolites in Cuba. GSA Annual Meeting, Denver, Colorado, USA

    Book  Google Scholar 

  33. Pszczółkowski A (2002) The margot formation in Western Cuba, A volcanic and Sedimentary Sequence of Cenomanian–Turonian age, p 15

    Google Scholar 

  34. Rojas Agramonte Y, Kröner A, García Casco A, Kemp T, Hegner E, Pérez M, Barth M, Liu D, Fonseca Montero A (2010) Zircon ages, sr-nd-hf isotopic compositions, and geochemistry for granitoids associated with the northern ophiolite mélange of central Cuba: tectonic implication for Late Cretaceous magmatism in the northwestern Caribbean. Am J Sci 310:1453–1479

    Article  Google Scholar 

  35. Saccani E (2015) A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geosci Front 6:481–501

    Article  Google Scholar 

  36. Shervais JW (1982) Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters 32:114–120

    Google Scholar 

  37. Simón A, Rodriguez G e Izquierdo M (1983) Algunas consideraciones petrológicas sobre el magmatismo Mesozoico de Pinar del Río. Empresa Geólogo-Minera de Occidente

    Google Scholar 

  38. Somin M, Millán G (1981) Geologia de los complejos metamórficos de Cuba Moscú. Nauka, p 219

    Google Scholar 

  39. Stern RJ, Reagan M, Ishizuka O, Ohara Y, Whattam S (2012) To understand subduction initiation, study forearc crust: To understand forearc crust, study ophiolites. Lithosphere 4(6):469–483

    Article  Google Scholar 

  40. Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 16:325–343

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Instituto de Geología y Paleontología/Servicio Geológico de Cuba for covering the expenses of geochemical analyses of sample SC1 introduced in this study and for allowing in the framework of a research project to perform this scientific work. We express our sincere thanks to Dr. Manuel E. Pardo Echarte, Dr. Jorge Rabassa, and Springer Editorial for giving us the opportunity to contribute this paper to the special monograph on Geology of Cuba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelica Isabel Llanes Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Llanes Castro, A.I., Furnes, H. (2021). Geochemical Fingerprinting of Ancient Oceanic Basalts: Classification of the Cuban Ophiolites. In: Pardo Echarte, M.E. (eds) Geology of Cuba. Regional Geology Reviews. Springer, Cham. https://doi.org/10.1007/978-3-030-67798-5_6

Download citation

Publish with us

Policies and ethics