Skip to main content

Nanocomposites as Reinforcement for Timber Structural Elements

  • Chapter
  • First Online:
Reinforcement of Timber Elements in Existing Structures

Part of the book series: RILEM State-of-the-Art Reports ((RILEM State Art Reports,volume 33))

Abstract

This chapter presents an overview of recent technological innovations in nanocomposite materials for protection and reinforcement of timber in construction. Starting from the definition of nanotechnologies applied in the field of construction and architectural heritage, the chapter briefly describes nano-materials available in the market. The role of different nano-coatings, their wood surface protection functions, and their compatibility with different wood species are reviewed. On-going experimental research projects for next-generation application fields are presented with a special focus on reinforcement of historic timber joints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Feynman, there’s plenty of room at the bottom, American Physical Society, California Institute of Technology (1959) Eng Sci 23(1960):22–36

    Google Scholar 

  2. Ashby MF, Ferreira PJ, Schodek DL (2009) Nanomaterials, nanotechnologies and design. An introduction for engineers and architects. Elsevier, Paris

    Google Scholar 

  3. Bartos PJM, De Miguel Y, Porro A (eds) (2005) Proceedings of the 2nd international symposium on nanotechnology in construction, 13–16 November 2005, Bilbao (Spain), RILEM, Bagneux

    Google Scholar 

  4. Elvin G (2007) The nano revolution. A science that works on the molecular scale is set to transform the way we build, Architect Magazine

    Google Scholar 

  5. Hincapié I, Künniger T, Hischier R, Cervellati D, Nowack B, Som C (2015) Nanoparticles in facade coatings: a survey of industrial experts on functional and environmental benefits and challenger. J Nanopart Res 17:287. https://doi.org/10.1007/s11051-015-3085-3

    Article  Google Scholar 

  6. Blee A, Matisons JG (2008) Nanoparticles and the conservation of cultural heritage. Mater Forum 32:121–128

    Google Scholar 

  7. Zhu W, Bartos PJM, Porro A (2004) Application of nanotechnology in construction. Summary of a state-of-the-art report. Mater Struct 37:649–658

    Google Scholar 

  8. van Broekhuizen P, van Broekhuizen F, Cornelissen R, Reijnders L (2011) Use of nanomaterials in the European construction industry and some occupational health aspects thereof. J Nanopart Res 13:447–462. https://doi.org/10.1007/s11051-010-0195-9

    Article  Google Scholar 

  9. Das BB, Mitra A (2014) Nanomaterials for construction engineering-a review. Int J Mater Mech Manuf 2(1):41–46. https://doi.org/10.7763/IJMMM.2014.V2.96

    Article  Google Scholar 

  10. AAVV (2004) Nanotechnology for the forest products industry. Vision and Technology Roadmap, Lansdowne, U.S.A., October 17–19. TAPPI Press, Atlanta

    Google Scholar 

  11. Cai Z, Rudie A, Stark N, Sabo R, Ralph S (2013) New products and product categories in the global forest sector. In: Hansen E, Panear R, Vlosky R (eds) The global forest sector: changes, practices, and prospects. CRC Press, Boca Raton, pp 129–149

    Google Scholar 

  12. Jacoby M (2014) Nano from the forest. Tiny cellulosic particles are poised to make big impact on materials technology. C&EN Chem Eng News 92(26):9–12

    Article  Google Scholar 

  13. De Borst K, Jenkel C, Montero C, Colmars J, Gril J, Kaliske M, Eberhardsteiner J (2013) Mechanical characterization of wood: an integrative approach ranging from nanoscale to structure. Comput Struct 127:53–67. https://doi.org/10.1016/j.compstruc.2012.11.019

    Article  Google Scholar 

  14. Bertolini Cestari C, Marzi T, Seip E, Touliatos P (eds) (2004) Interaction between science, technology and architecture in timber construction. Elsevier, Paris

    Google Scholar 

  15. Kasal B, Tannert T (2010) In Situ assessment of structural timber. Springer. https://doi.org/10.1007/978-94-007-0560-9

    Article  Google Scholar 

  16. Baglioni P, Chelazzi D, Giorni R (2015) Nanotechnologies in the conservation of cultural heritage. A compendium of materials and techniques. Springer. https://doi.org/10.1007/978-94/017-9303-2

  17. Lintula K, Sirola N, Summanen M (2012) Kamppi chapel of silence. PUU 2:6–13

    Google Scholar 

  18. https://learnsee.wordpress.com/2012/07/29/kamppi-chapel-finishing-touch/. Date of access January 2017

  19. http://www.architectmagazine.com/technology/detail/a-curved-wooden-chapel-in-a-northern-square_o

  20. Servais F (2013) Rénovation et extension de l’Hôtel du Val d’Amblève à Stavelot, Les Cahiers nouveaux N° 87, pp 99–100

    Google Scholar 

  21. The NanoPhos Casebook: applications from across the world, Jan 2013. http://www.nanophos.com/en/. Date of access October 2014

  22. www.nanobiz.com. Date of access October 2014

  23. Vita I, Fernandez F, Scognamiglio M, Bellanca L (2009) Applicazione di prodotti nanostrutturati per la protezione di superfici storiche nella Cappella Palatina (Pa). In: Sposito A (ed) Nanotech for architecture. Luciano Editore, pp 369–380

    Google Scholar 

  24. Ansell MP (2013) Multi-functional nano-materials for timber in construction. Proc ICE Const Mater 166(4):248–256. https://doi.org/10.1680/coma.12.00035

    Article  Google Scholar 

  25. http://www.icannanopaints.com/nanoTechnology.html. Date of access May 2015

  26. Fernando RH (2009) Nanocomposite and nanostructured coatings: recent advancements. In: Fernando R et al (eds) Nanotechnology applications in coatings; ACS symposium series. American Chemical Society, Washington, DC, pp 2–21. http://dx.doi.org/10.1021/bk-2009-1008.ch001

  27. Jones W, Gibb A, Goodier C, Burst P, Song M, Jin J (2016) Nanomaterials in construction—what is being used, and where? In: Proceedings of the ICE, construction materials, pp 1–14. http://dx.doi.org/10.1680/jcoma.16.00011

  28. Marzi T (2010) Impiego di nanotecnologie nei beni culturali per l’efficienza di sistemi manutentivi del costruito in legno: tecnologie innovative di recupero (Nanotechnologies/nanosciences: from wood improvement to the reinforcement of timber and monitoring of interventions). PhD Thesis in Innovation Technology for Built Environment, tutor Prof. Bertolini Cestari C., Politecnico di Torino

    Google Scholar 

  29. Marzi T (2015) Nanotechnologies for reinforcement and protection of timber structures: a review and future challenges. Constr Build Mater 97:119–130. https://doi.org/10.1016/j.conbuildmat.2015.07.016

    Article  Google Scholar 

  30. Vlosky RP (2009) Statistical overview of the U.S. Wood Preserving Industry: 2007. Louisiana Forest Products Development Center

    Google Scholar 

  31. Evans PD, Matsunaga H, Kiguchi M (2008) Large-scale application of nanotechnology for wood protection. Nat Nanotechnol 3(10):577. https://doi.org/10.1038/nnano.2008.286

    Article  Google Scholar 

  32. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22. https://doi.org/10.1016/j.envpol.2007.06.006

    Article  Google Scholar 

  33. Blanchet P, Landry V (2015) Nanocomposite coatings and plasma treatments for wood-based products. In: Ansell M (ed) Wood composites. Elsevier. ISBN: 978-1-78242-454-3. http://dx.doi.org/10.1016/B978-1-78242-454-3.00013-5

  34. Lowden LA, Hull TR (2013) Flammability behaviour of wood and a review of the methods for its reduction. Fire Sci Rev 2:4. https://doi.org/10.1186/2193-0414-2-4

    Article  Google Scholar 

  35. Taghiyari HR (2012) Fire-retarding properties of nano-silver in solid wood. Wood Sci Technol 46:939–952. https://doi.org/10.1007/s00226-011-0455-6

    Article  Google Scholar 

  36. Bertolini C, Crivellaro A, Marciniak M, Marzi T, Socha M (2010) Nanostructured materials for durability and restoration of wooden surfaces in architecture and civil engineering. In: Ceccotti A, Wan De Kuilen J-W (eds) Proceedings of 11th world conference on timber engineering, vol III, pp 705–706

    Google Scholar 

  37. http://www.coating.co.uk/intumescent-paint-for-wood/. Date of access January 2017

  38. www.percenta.com. Date of access October 2014

  39. Francés Bueno AB, Navarro Bañón MV, Martínez de Morentín L, Moratalla García J (2014) Treatment of natural wood veneers with nano-oxides to improve their fire behaviour. In: 2nd international conference on structural nano composites (NANOSTRUC 2014). IOP conf. series: materials science and engineering, vol 64, p 012021. IOP Publishing. https://doi.org/10.1088/1757-899x/64/1/012021

  40. www.nctchemical.com/en. Date of access May 2016

  41. Spanò A, Bertolini Cestari C, Marzi T, Maspoli R, Torretta A, Percivalle E, Nicola M (2016) Final report of the regional feasibility study “WOOD_defender”, Politecnico di Torino

    Google Scholar 

  42. Haghighi Poshtiri A, Taghiyari HR, Karimi AN (2014) Fire-retarding properties of nano-wollastonite in solid wood. Philip Agric Sci 97(1):52–59

    Google Scholar 

  43. Taghiyari HR (2014) Nanotechnology in wood and wood-composite materials. J Nanomater Mol Nanotechnol 3:1. https://doi.org/10.4172/2324-8777.1000e106

    Article  Google Scholar 

  44. https://grasi.en.alibaba.com/. Date of access January 2017

  45. http://www.vistapaint.fr. Date of access January 2017

  46. Evans PD, Haase JG, Shakri A, Semanand BM, Kiguchi M (2015) The search for durable exterior clear coatings for wood, coatings. vol 5, pp 830–864. https://doi.org/10.3390/coatings5040830

  47. Nikolic M, Lawther JM, Sanadi AR (2015) Use of nanofillers in wood coatings: a scientific review. J Coat Technol Res 12:445–461

    Google Scholar 

  48. Srinivas K, Pandey KK (2017) Enhancing photostability of wood coatings using titanium dioxide nanoparticles. In: Pandey K, Ramakantha V, Chauhan S, Arun Kumar AN (eds) Wood is good. Current trends and future prospects in wood utilization. Springer, Singapore, pp 251–250. https://doi.org/10.1007/978-981-10-3115-1

  49. Auclair N, Riedl B, Blanchard V, Blanchet P (2011) Improvement of photoprotection of wood coatings by using inorganic nanoparticles as ultraviolet absorbers. Forest Prod J 61(1):20–27

    Article  Google Scholar 

  50. Blanchard V, Blanchet P (2011) Color stability for wood products during use: effects of inorganic nanoparticles. BioResources 6(2):1219–1229

    Google Scholar 

  51. Allen NS, Edge M, Ortega A et al (2002) Behaviour of nanoparticle (ultrafine) titanium dioxide pigments and stabilisers on the photooxidative stability of water based acrylic and isocyanate based acrylic coatings. Polym Degrad Stab 78(3):467–478. https://doi.org/10.1016/S0141-3910(02)00189-1

    Article  Google Scholar 

  52. Vlad-Cristea M, Riedl B, Blanchet P (2010) Enhancing the performance of exterior waterborne coatings for wood by inorganic nanosized UV absorbers. Prog Org Coat 69:432–441. https://doi.org/10.1016/j.porgcoat.2010.08.006

    Article  Google Scholar 

  53. Vlad-Cristea M, Riedl B, Blanchet P (2011) Effect of addition of nanosized UV absorbers on the physicomechanical and thermal properties of an exterior waterborne stain for wood. Prog Org Coat 72:755–762. https://doi.org/10.1016/j.porgcoat.2011.08.007

    Article  Google Scholar 

  54. Vlad-Cristea M, Riedl B, Blanchet P, Jimenez-Pique E (2012) Nanocharacterization techniques for investigating the durability of wood coatings. Eur Polym J 48:441–453. https://doi.org/10.1016/j.eurpolymj.2011.12.002

    Article  Google Scholar 

  55. Germak C, Bozzola M (2013) Technical report of the EU project Alcotra 2007 “Savoir Bois”. Politecnico di Torino

    Google Scholar 

  56. Germak C, Bozzola M (2013) Savoir bois: culture and furniture for the mountain. Paesaggio Urbano 4:42–47

    Google Scholar 

  57. Raghavan S, Gopagani R, Kalidindi R (2013) Multifunctional sol–gel coatings for protection of wood. Wood Mat Sci Eng 8(4):226–233. https://doi.org/10.1080/17480272.2013.834967

    Article  Google Scholar 

  58. Tijing lP, Amarjargal A, Jiang Z, Ruelo M, Park C-H, Pant HR, Kim D-W, Lee DH, Kim CS (2013) Antibacterial tourmaline nanoparticles/polyurethane hybrid mat decorated with silver nanoparticles prepared by elecrospinning and UV photoreduction. Curr Appl Phys 13(1):205–210. https://doi.org/10.1016/j.cop.2012.07.011

  59. Nejad M, Cooper P, Landry V, Blanchet P, Koubaa A (2015) Studying dispersion quality of nanoparticles into a bio-based coating. Org Coat 89:246–251. https://doi.org/10.1016/j.porgcoat.2015.09.006

    Article  Google Scholar 

  60. Landry V, Blanchet P, Riedl B (2010) Mechanical and optical properties of clay-based nanocomposites coatings for wood flooring. Prog Org Coat 67(4):381–388

    Article  Google Scholar 

  61. Amerio E et al (2008) Scratch resistance of nano-silica reinforced acrylic coatings. Prog Org Coat 62(2):129–133

    Article  Google Scholar 

  62. Dei L, Salvadori B (2006) Nanotechnology in cultural heritage conservation: nanometric slaked lime saves architectonic and artistic surfaces from decay. J Cult Herit 7(2):110–115. https://doi.org/10.1016/j.culher.2006.02.001

    Article  Google Scholar 

  63. Daniele V, Taglieri G, Quaresima R (2008) The nanolimes in cultural heritage conservation: characterisation and analysis of the carbonatation process. J Cult Herit 9(3):294–301. https://doi.org/10.1016/j.culher.2007.10.007

    Article  Google Scholar 

  64. Baglioni P, Giorgi R (2006) Soft and hard nanomaterials for restoration and conservation of cultural heritage. Soft Matter 2(4):293–303. https://doi.org/10.1039/B516442G

    Article  Google Scholar 

  65. Baglioni P, Chelazzi D, Giorgi R (2005) Nanoparticles of calcium hydroxide for wood conservation, The deacidification of the Vasa warship. Langmuir 21:10743–10748

    Article  Google Scholar 

  66. Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45(4):1177–1183

    Article  Google Scholar 

  67. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002

    Article  Google Scholar 

  68. Kaegi R, Sinnet B, Zuleeg S et al (2010) Release of silver nanoparticles from outdoor facades. Environ Pollut 158(9):2900–2905. https://doi.org/10.1016/j.envpol.2010.06.009

    Article  Google Scholar 

  69. Kartal SN, Green F, Clausen CA (2009) Do the unique properties of nano-metals affect leachability or efficacy against fungi and termites? Int Biodeterior Biodegrad 63(6):490–495

    Article  Google Scholar 

  70. Terzi E, Nami Kartal S, Nural Yılgör N, Rautkari L, Yoshimura T (2016) Role of various nano-particles in prevention of fungal decay, mold growth and termite attack in wood, and their effect on weathering properties and water repellency. Int Biodeter Biodegradation 107:77e87. http://dx.doi.org/10.1016/j.ibiod.2015.11.010

  71. Breuer O, Sundararaj U (2004) Big return from small fibers: a review of polymer/carbon nanotube composites. Polym Compos 25(6):630–645. https://doi.org/10.1002/pc.20058

    Article  Google Scholar 

  72. Ahmad Z, Ansell MP, Smedley D (2010) Epoxy adhesives modified with nano- and micro-particles for in-situ timber bonding: effect of microstructure on bond integrity. Int J Mech Mater Eng 5:59–67

    Google Scholar 

  73. Ahmad Z, Ansell MP, Smedley D (2011) Epoxy adhesives modified with nano- and microparticles for in-situ timber bonding: fracture toughness characteristics. J Eng Mater Tech 133:031006-1–031006-9

    Google Scholar 

  74. Ahmad Z, Ansell MP, Smedley D, Thermal properties of epoxy-based adhesive reinforced with nano and micro-particles for in-situ timber bonding. Int J Eng Technol IJET-IJENS 10(02):21–27, 104202-6969

    Google Scholar 

  75. Pizzo B, Smedley D (2015) Adhesive for on-site bonding: characteristics, testing and prospects. In: Harte AM, Dietsch P (eds) Reinforcement of timber structures. A state-of-the art report. Shaker Verlag, Aachen, pp 113–131

    Google Scholar 

  76. Kaboorani A, Riedl B (2012) Nano-aluminum oxide as a reinforcing material for thermoplastic adhesives. J Ind Eng Chem 18:1076–1081. https://doi.org/10.1016/j.jiec.2011.12.001

    Article  Google Scholar 

  77. Tuduce-Tra˘istaru AA, Câmpean M, Timar MC (2010) Compatibility indicators in developing consolidation materials with nanoparticle insertions for old wooden objects. Int J Conserv Sci 1(4):219–226

    Google Scholar 

  78. Bertolini Cestari C, Invernizzi S, Marzi T, Tulliani JM (2008) Nanotechnologies applied to the restoration and maintenance of wooden built heritage. In: D’Ayala D, Forde E (eds) Structural analysis of historical construction. Preserving safety and significance. In: Proceedings of SAHC2008. VI international conference, bath. Taylor & Francis, London, pp 941–947

    Google Scholar 

  79. Bertolini Cestari C, Invernizzi S, Marzi T, Tulliani JM (2009) Use of nanotechnologies and nanosciences in cultural heritage for the efficiency of maintenance systems in wooden built heritage: restoration, conservation, maintenance, monitoring of interventions. In: Structures en bois dans le patrimoine bâti, Actes des journées techniques intern. Bois, Les cahiers d’ICOMOS France, Icomos, Paris, pp 87–91

    Google Scholar 

  80. Bertolini C, Invernizzi S, Marzi T, Tulliani JM (2013) The reinforcement of ancient timber-joints with carbon nano-composites. Meccanica 48:1925–1935. https://doi.org/10.1007/s11012-013-9735-6

    Article  Google Scholar 

  81. Marzi T (2015) Nanostructured materials for protection and reinforcement of timber structures: innovative nano-coatings. In: Harte AM, Dietsch P (eds) Reinforcement of timber structures. A state-of-the art report. Shaker Verlag, Aachen, pp 209–230

    Google Scholar 

  82. Gojny FH, Wichmann MHG, Köpke U, Fiedler B, Schulte K (2004) Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Compos Sci Technol 64:2363–2371. https://doi.org/10.1016/j.compscitech.2004.04.002

    Article  Google Scholar 

  83. Lau KT, Lui D (2002) Effectiveness of using carbon nanotubes as nanoreinforcements for advanced composite structures. Carbon 2002:1597–1617. https://doi.org/10.1016/S0008-6223(02)00157-4

    Article  Google Scholar 

  84. Yeh M-K, Hsieh T-H, Tai N-H (2008) Fabrication and mechanical properties of multi-walled carbon nanotubes/epoxy nanocomposites. Mater Sci Eng 483–484:289–292. https://doi.org/10.1016/S0008-6223(02)00133-1

    Article  Google Scholar 

  85. Chakraborty AK, Plyhm T, Barbezat M, Necola A, Terrasi GP (2011) Carbon nanotube (CNT)-epoxy nanocomposites: a systematic investigation of CNT dispersion. J Nanopart Res 13:6493–6506. https://doi.org/10.1007/s11051-011-0552-3

    Article  Google Scholar 

  86. Chen H, Jacobs O, Wu W, Rüdiger G, Schädel B (2007) Effect of dispersion method on tribological properties of carbon nanotube reinforced epoxy resin composites. Polym Test 26:351–360. https://doi.org/10.1016/j.polymertesting.2006.11.004

    Article  Google Scholar 

  87. Miyagawa H, Drzal LT (2004) Thermo-physical impact properties of epoxy nanocomposites reinforced by singlewall carbon nanotubes. Polymer 45:5163–5170. https://doi.org/10.1016/j.polymer.2004.05.036

    Article  Google Scholar 

  88. Lau K, Lu M, Lam C, Cheung H, Sheng F, Li H (2005) Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy composites: the role of solvent for nanotube dispersion. Compos Sci Technol 65:719–725. https://doi.org/10.1016/j.compscitech.2004.10.005

    Article  Google Scholar 

  89. Miyagawa H, Rich MJ, Drzal LT (2006) Thermophysical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapour grown carbon fibers. Thermochim Acta 442:67–73. https://doi.org/10.1016/j.tca.2006.01.016

    Article  Google Scholar 

  90. Webster TJ, Waid MC, McKenzie JL, Price RL, Ejiofor JU (2004) Nanobiotechnology: carbon nanofibres as improved neural and orthopaedic implants. Nanotechnology 15:48–54

    Article  Google Scholar 

  91. Bertolini Cestari C, Invernizzi S, Marzi T, Tulliani JM (2010) Nano-technologies/smart-materials in timber constructions belonging to cultural heritage. In: Proceedings of 11th world conference on timber engineering, vol IV, pp 761–762

    Google Scholar 

  92. http://www.nanocyl.com. Date of access October 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanja Marzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 RILEM

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bertolini-Cestari, C., Marzi, T. (2021). Nanocomposites as Reinforcement for Timber Structural Elements. In: Branco, J., Dietsch, P., Tannert, T. (eds) Reinforcement of Timber Elements in Existing Structures. RILEM State-of-the-Art Reports, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-030-67794-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67794-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67793-0

  • Online ISBN: 978-3-030-67794-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics