Skip to main content
  • 1834 Accesses

Summary

A group of organic acidurias, including Canavan disease (N-acetylaspartic aciduria), glutaric aciduria type I, L-2-hydroxyglutaric aciduria and D-2-hydroxyglutaric aciduria types I and II, are characterised by a predominantly or even exclusively neurological presentation and have therefore been termed ‘cerebral’. The clinical presentation frequently includes developmental delay, cognitive disability, movement disorder and epilepsy, resulting from acute and/or chronic pathological changes in various brain regions including grey matter (cortex, basal ganglia, cerebellum) and white matter (periventricular and subcortical). Unlike ‘classic’ organic acidurias (e.g. propionic and methylmalonic aciduria), acute metabolic decompensations with hyperammonaemia, metabolic acidosis and elevated concentrations of lactate and ketone bodies are uncommon for cerebral organic acidurias. Biochemically, these diseases are characterised by accumulation of characteristic organic acids, mostly dicarboxylic acids, in body fluids. At high concentrations, some of these may become neurotoxic. Since the blood–brain barrier has a low transport capacity for dicarboxylic acids, cerebral accumulation of dicarboxylic acids is facilitated. Impairment of brain energy metabolism is suggested to play a central role in the pathophysiology of this disease group. Metabolic treatment initiated in neonatally diagnosed patients with glutaric aciduria type I has significantly improved the neurological outcome, whereas current treatment strategies for the other cerebral organic acidurias are ineffective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Assadi M, Janson C, Wan DJ, et al. Lithium citrate reduces excessive intracerebral N-acetylaspartate in Canavan disease. Eur J Paediatr Neurol. 2010;14:354–9.

    Article  Google Scholar 

  • Boy N, Heringer J, Brackmann R, et al. Extrastriatal changes in patients with late-onset glutaric aciduria type I highlight the risk of long-term neurotoxicity. Orphanet J Rare Dis. 2017a;12:77. PMID: 28438223

    Article  Google Scholar 

  • Boy N, Mengler K, Thimm E, et al. Newborn screening: a disease-changing intervention for glutaric aciduria type 1. Ann Neurol. 2018;83:970–9. PMID: 29665094

    Article  CAS  Google Scholar 

  • Boy N, Mühlhausen C, Maier EM, et al. Proposed recommendations for diagnosing and managing individuals with glutaric aciduria type I: second revision. J Inherit Metab Dis. 2017b;40:75–101. PMID: 27853989

    Article  Google Scholar 

  • Gessler DJ, Li D, Su Q, et al. Redirecting N-acetylaspartate metabolism in the central nervous system normalizes myelination and rescues Canavan disease. JCI Insight. 2017;2:e9087. PMID: 28194442

    Article  Google Scholar 

  • Gitiaux C, Roze E, Kinugawa K, et al. Spectrum of movement disorders associated with glutaric aciduria type 1: a study of 16 patients. Mov Disord. 2008;23:2392–7.

    Article  Google Scholar 

  • Harting I, Neumaier-Probst E, Seitz A, et al. Dynamic changes of striatal and extrastriatal abnormalities in glutaric aciduria type I. Brain. 2009;132:1764–82.

    Article  Google Scholar 

  • Heringer J, Boy SPN, Ensenauer R, et al. Use of guidelines improves the neurological outcome in glutaric aciduria type I. Ann Neurol. 2010;68:743–52.

    Article  Google Scholar 

  • Kölker S, Christensen E, Leonard JV, et al. Diagnosis and management of glutaric aciduria type I—revised recommendations. J Inherit Metab Dis. 2011;34:677–94.

    Article  Google Scholar 

  • Kölker S, Garbade S, Greenberg CR, et al. Natural history, outcome, and treatment efficacy in children and adults with glutaryl-CoA dehydrogenase deficiency. Pediatr Res. 2006;59:840–7.

    Article  Google Scholar 

  • Kranendijk M, Struys EA, Van Schaftingen E, et al. IDH2 mutations in patients with D-2-hydroxyglutaric aciduria. Science. 2010;330:336.

    Article  CAS  Google Scholar 

  • Leone P, Janson CG, Bilanuk L, et al. Aspartoacylase gene transfer to the mammalian central nervous system with therapeutic implications for Canavan disease. Ann Neurol. 2000;48:27–38.

    Article  CAS  Google Scholar 

  • Matalon R, Michals K, Kaul R. Canavan disease: from spongy degeneration to molecular analysis. J Pediatr. 1995;127:511–7.

    Article  CAS  Google Scholar 

  • Sauer SW, Okun JG, Fricker G, et al. Intracerebral accumulation of glutaric and 3-hydroxyglutaric acids secondary to limited flux across the blood–brain barrier constitutes a biochemical risk factor for neurodegeneration in glutaryl-CoA dehydrogenase deficiency. J Neurochem. 2006;97:899–910.

    Article  CAS  Google Scholar 

  • Segel R, Anikster Y, Zevin S, et al. A safety trial of high glucose triacetate for Canavan disease. Mol Genet Metab. 2011;103:203–6.

    Article  CAS  Google Scholar 

  • Steenweg ME, Jakobs C, Errami A, et al. An overview of L-2-hydroxyglutarate dehydrogenase gene (L2HGDH) variants: a genotype-phenotype study. Hum Mutat. 2010;31:380–90.

    Article  CAS  Google Scholar 

  • Steenweg ME, Salomons GS, Yapici Z, et al. L-2-Hydroxyglutaric aciduria: pattern of MR imaging abnormalities in 56 patients. Radiology. 2009;2009(251):856–65.

    Article  Google Scholar 

  • Struys EA, Salomons GS, Achouri Y, et al. Mutations in the D-2-hydroxyglutarate dehydrogenase gene cause D-2-hydroxyglutaric aciduria. Am J Hum Genet. 2005;76:358–60.

    Article  CAS  Google Scholar 

  • Struys EA, Verhoeven NM, Brunengraber H, et al. Investigations by mass isotopomer analysis of the formation of D-2-hydroxyglutarate by cultured lymphoblasts from two patients with D-2-hydroxyglutaric aciduria. FEBS Lett. 2004;557(1–3):115–20.

    Article  CAS  Google Scholar 

  • Van Schaftingen E, Rzem R, Veiga-da-Cunha M. L-2-hydroxyglutaric aciduria, a disorder of metabolite repair. J Inherit Metab Dis. 2009;32:135–42.

    Article  Google Scholar 

  • Wang F, Travins J, Lin Z, et al. A small molecule inhibitor of mutant IDH2 rescues cardiomyopathy in a D-2-hydroxyglutaric aciduria type II mouse model. J Inherit Metab Dis. 2016;39:807–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kölker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kölker, S. (2022). Cerebral Organic Acidurias. In: Blau, N., Dionisi Vici, C., Ferreira, C.R., Vianey-Saban, C., van Karnebeek, C.D.M. (eds) Physician's Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-67727-5_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67727-5_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67726-8

  • Online ISBN: 978-3-030-67727-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics