Skip to main content

Mucolipidoses, Multiple Sulfatase Deficiency, and Cathepsin K and C Deficiency

  • Chapter
  • First Online:
Physician's Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases

Summary

Mucolipidosis type II/III (ML II/III) and multiple sulfatase deficiency (MSD) share clinical features with the mucopolysaccharidoses. Both ML II/III and MSD result from enzymatic defects that affect the post-translational modification of lysosomal enzymes. In ML II/III the mannose-6-phosphate marker, essential for routing lysosomal enzymes towards the lysosomes, is lacking. This leads to the excretion of lysosomal enzymes in plasma where they are unable to execute their function. In MSD lysosomal sulfatases, as well as sulfatases from the endoplasmic reticulum and Golgi complex, cannot be activated due to the inability to modify a conserved cysteine residue at the active site. In mucolipidosis type IV (ML IV), lysosomal dysfunction is caused by the deficiency of transient receptor potential channel mucolipin-1 (TRPML1), a nonselective cation channel present in late endosomal and lysosomal membranes necessary for autophagy, vesicular trafficking, and mTOR and TFEB signaling. Neurological dysfunction and visual impairment are the most predominant clinical features; skeletal abnormalities are not seen in ML IV. Deficiency of the lysosomal enzymes cathepsin K (pycnodysostosis) and C (Papillon–Lefèvre or Haim–Munk syndrome) presents both with a very distinct clinical picture. Cathepsin K is important for bone resorption and extracellular matrix remodeling. Its deficiency results in stunted growth, facial dysmorphism, osteopetrosis, and dental abnormalities. In cathepsin C deficiency, premature loss of both deciduous and permanent teeth due to periodontitis in combination with palmoplantar keratosis is the main clinical feature.

All disorders are ultra-rare and have autosomal recessive inheritance. Their clinical spectrum is not yet fully known, and patients are likely still underdiagnosed. No specific biomarkers are available that can lead to the diagnosis. All disorders have in common that no curative treatments are available and specialized multidisciplinary supportive care is needed to minimize the disease burden and provide an adequate quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahrens-Nicklas R, Schlotawa L, Ballabio A, et al. Complex care of individuals with multiple sulfatase deficiency: clinical cases and consensus statement. Mol Genet Metab. 2018;123:337–46.

    Article  CAS  Google Scholar 

  • Austin J, McAfee D, Armstrong D, O’Rourke M, Shearer L, Bachhawat B. Abnormal sulphatase activities in two human diseases (metachromatic leucodystrophy and gargoylism). Biochem J. 1964;93:15C–7C.

    Article  CAS  Google Scholar 

  • Bargal R, Avidan N, Olender T, et al. Mucolipidosis type IV: novel MCOLN1 mutations in Jewish and non-Jewish patients and the frequency of the disease in the Ashkenazi Jewish population. Hum Mutat. 2001;17:397–402.

    Article  CAS  Google Scholar 

  • Bizaoui V, Michot C, Baujat G, et al. Pycnodysostosis: natural history and management guidelines from 27 French cases and a literature review. Clin Genet. 2019;96:309–16.

    Article  CAS  Google Scholar 

  • Boudewyn LC, Walkley SU. Current concepts in the neuropathogenesis of mucolipidosis type IV. J Neurochem. 2019;148:669–89.

    Article  CAS  Google Scholar 

  • Bullon P, Castejon-Vega B, Roman-Malo L, et al. Autophagic dysfunction in patients with Papillon-Lefevre syndrome is restored by recombinant cathepsin C treatment. J Allergy Clin Immunol. 2018;142:1131–1143.e1137.

    Article  CAS  Google Scholar 

  • Cathey SS, Leroy JG, Wood T, et al. Phenotype and genotype in mucolipidoses II and III alpha/beta: a study of 61 probands. J Med Genet. 2010;47:38–48.

    Article  CAS  Google Scholar 

  • Cheng X, Shen D, Samie M, Xu H. Mucolipins: intracellular TRPML1-3 channels. FEBS Lett. 2010;584:2013–21.

    Article  CAS  Google Scholar 

  • Clapham DE, Runnels LW, Strubing C. The TRP ion channel family. Nat Rev Neurosci. 2001;2:387–96.

    Article  CAS  Google Scholar 

  • Grewal S, Kilic O, Savci-Heijink CD, Kloen P. Disturbed remodeling and delayed fracture healing in pediatric pycnodysostosis patients. J Orthop. 2019;16:373–7.

    Article  Google Scholar 

  • Hart PS, Zhang Y, Firatli E, et al. Identification of cathepsin C mutations in ethnically diverse papillon-Lefevre syndrome patients. J Med Genet. 2000;37:927–32.

    Google Scholar 

  • Hennermann JB, Gokce S, Solyom A, Mengel E, Schuchman EH, Simonaro CM. Treatment with pentosan polysulphate in patients with MPS I: results from an open label, randomized, monocentric phase II study. J Inherit Metab Dis. 2016;39:831–7.

    Article  CAS  Google Scholar 

  • Kerr DA, Memoli VA, Cathey SS, Harris BT. Mucolipidosis type III alpha/beta: the first characterization of this rare disease by autopsy. Arch Pathol Lab Med. 2011;135:503–10.

    Article  Google Scholar 

  • Kobayashi H, Takahashi-Fujigasaki J, Fukuda T, et al. Pathology of the first autopsy case diagnosed as mucolipidosis type III alpha/beta suggesting autophagic dysfunction. Mol Genet Metab. 2011;102:170–5.

    Article  CAS  Google Scholar 

  • Korkmaz B, Caughey GH, Chapple I, et al. Therapeutic targeting of cathepsin C: from pathophysiology to treatment. Pharmacol Ther. 2018;190:202–36.

    Article  Google Scholar 

  • Leroy JG, Martin JJ. Mucolipidosis II (I-cell disease): present status of knowledge. Birth Defects Orig Artic Ser. 1975;11:283–93.

    CAS  PubMed  Google Scholar 

  • Lund TC, Cathey SS, Miller WP, et al. Outcomes after hematopoietic stem cell transplantation for children with I-cell disease. Biol Blood Marrow Transplant. 2014;20:1847–51.

    Article  Google Scholar 

  • Machado RA, Cuadra-Zelaya FJM, Martelli-Junior H, et al. Clinical and molecular analysis in Papillon-Lefevre syndrome. Am J Med Genet A. 2019;179:2124–31.

    Article  CAS  Google Scholar 

  • Markatos K, Mavrogenis AF, Karamanou M, Androutsos G. Pycnodysostosis: the disease of Henri de Toulouse-Lautrec. Eur J Orthop Surg Traumatol. 2018;28:1569–72.

    Article  Google Scholar 

  • Maroteaux P, Lamy M. Pyknodysostosis. Presse Med. 1962;70:999–1002.

    CAS  Google Scholar 

  • Maroteaux P, Lamy M. [Hurler’s pseudo-polydystrophy] La pseudo-polydystrophie de Hurler. Presse Med. 1966;74:2889–92.

    CAS  Google Scholar 

  • Matos L, Vilela R, Rocha M, et al. Development of an antisense oligonucleotide-mediated exon skipping therapeutic strategy for mucolipidosis II: validation at RNA level. Hum Gene Ther. 2020;31:775–83.

    Article  CAS  Google Scholar 

  • Nampoothiri S, Elcioglu NH, Koca SS, et al. Does the clinical phenotype of mucolipidosis-IIIgamma differ from its alphabeta counterpart?: Supporting facts in a cohort of 18 patients. Clin Dysmorphol. 2019;28:7–16.

    Article  Google Scholar 

  • Novinec M, Lenarcic B. Cathepsin K: a unique collagenolytic cysteine peptidase. Biol Chem. 2013;394:1163–79.

    Article  CAS  Google Scholar 

  • Reitman ML, Kornfeld S. UDP-N-acetylglucosamine:glycoprotein N-acetylglucosamine-1-phosphotransferase. Proposed enzyme for the phosphorylation of the high mannose oligosaccharide units of lysosomal enzymes. J Biol Chem. 1981;256:4275–81.

    Article  CAS  Google Scholar 

  • Robinson C, Baker N, Noble J, et al. The osteodystrophy of mucolipidosis type III and the effects of intravenous pamidronate treatment. J Inherit Metab Dis. 2002;25:681–93.

    Article  CAS  Google Scholar 

  • Sabourdy F, Mourey L, Le Trionnaire E, et al. Natural disease history and characterisation of SUMF1 molecular defects in ten unrelated patients with multiple sulfatase deficiency. Orphanet J Rare Dis. 2015;10:31.

    Article  Google Scholar 

  • Schlotawa L, Ennemann EC, Radhakrishnan K, et al. SUMF1 mutations affecting stability and activity of formylglycine generating enzyme predict clinical outcome in multiple sulfatase deficiency. Eur J Hum Genet. 2011;19:253–61.

    Article  CAS  Google Scholar 

  • Spampanato C, De Leonibus E, Dama P, et al. Efficacy of a combined intracerebral and systemic gene delivery approach for the treatment of a severe lysosomal storage disorder. Mol Ther. 2011;19:860–9.

    Article  CAS  Google Scholar 

  • Sreeramulu B, Shyam ND, Ajay P, Suman P. Papillon-Lefevre syndrome: clinical presentation and management options. Clin Cosmet Investig Dent. 2015;7:75–81.

    Article  Google Scholar 

  • Tan EY, Boelens JJ, Jones SA, Wynn RF. Hematopoietic stem cell transplantation in inborn errors of metabolism. Front Pediatr. 2019;7:433.

    Article  Google Scholar 

  • Velho RV, Harms FL, Danyukova T, et al. The lysosomal storage disorders mucolipidosis type II, type III alpha/beta, and type III gamma: update on GNPTAB and GNPTG mutations. Hum Mutat. 2019;40:842–64.

    CAS  PubMed  Google Scholar 

  • Wen X, Yi LZ, Liu F, Wei JH, Xue Y. The role of cathepsin K in oral and maxillofacial disorders. Oral Dis. 2016;22:109–15.

    Article  CAS  Google Scholar 

  • Xue Y, Cai T, Shi S, et al. Clinical and animal research findings in pycnodysostosis and gene mutations of cathepsin K from 1996 to 2011. Orphanet J Rare Dis. 2011;6:20.

    Article  Google Scholar 

  • Zolkipli Z, Noimark L, Cleary MA, Owens C, Vellodi A. Temporomandibular joint destruction in mucolipidosis type III necessitating gastrostomy insertion. Eur J Pediatr. 2005;164:772–4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hidde H. Huidekoper or Esmee Oussoren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huidekoper, H.H., Oussoren, E. (2022). Mucolipidoses, Multiple Sulfatase Deficiency, and Cathepsin K and C Deficiency. In: Blau, N., Dionisi Vici, C., Ferreira, C.R., Vianey-Saban, C., van Karnebeek, C.D.M. (eds) Physician's Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-67727-5_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67727-5_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67726-8

  • Online ISBN: 978-3-030-67727-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics