Skip to main content

Summary

Manganese is an essential trace metal that is a constituent of metalloenzymes and is required as an enzyme activator. Blood manganese levels are under tight homeostatic control by the liver as both manganese overload and deficiency impair neuronal function and integrity.

To date, three inherited manganese transporter defects have been identified that lead to abnormal blood manganese levels: mutations in SLC30A10 (hypermanganesaemia with dystonia 1, HMNDYT1) and SLC39A14 (hypermanganesaemia with dystonia 2, HMNDYT2) cause manganese overload, while mutations in SLC39A8 (Congenital Disorder of Glycosylation, Type IIn; CDG2N) cause manganese deficiency. SLC39A14 and SLC30A10 are required for hepatic uptake and adequate biliary excretion of manganese, respectively. Both these transporter defects are characterised by childhood-onset, progressive Parkinsonism-dystonia due to the accumulation of manganese in the basal ganglia, particularly the globus pallidus, with pathognomonic MRI brain appearances of hyperintensity on T1-weighted images. Whole blood manganese levels are highly raised. In addition to the movement disorder, SLC30A10 loss-of-function causes liver disease, polycythaemia and depletion of iron stores. Intravenous chelation with disodium calcium edetate and iron supplementation effectively lowers the manganese load and can lead to significant improvement in neurological symptoms and halt the progress of liver disease.

SLC39A8 is required for manganese uptake into the organism. Loss-of-function leads to a manganese deficiency syndrome characterised by neurodevelopmental delay, seizures, dystonia and short stature. Biochemically, SLC39A8 deficiency causes hypomanganesaemia and a characteristic dysglycosylation pattern corresponding to a type II congenital disorder of glycosylation because manganese acts as a cofactor for the β-1,4-galactosyltransferase. In addition, manganese deficiency leads to respiratory chain abnormalities and Leigh-like mitochondrial disease. Manganese supplementation can improve clinical symptoms and normalise biochemical findings.

Manganese dyshomeostasis has also been observed in a juvenile type of Parkinson’s disease associated with supranuclear gaze palsy, spasticity and dementia due to mutations in ATP13A2 (PARK9), also known as Kufor-Rakeb Syndrome. ATP13A2 has been shown to transport manganese from the cytosol to the lysosome. In addition, the phenotype can vary from neuronal ceroid lipofuscinosis type 12 (CLN12) to complicated hereditary spastic paraplegia (HSP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boycott KM, Beaulieu CL, Kernohan KD, Gebril OH, Mhanni A, Chudley AE, et al. Autosomal-recessive intellectual disability with cerebellar atrophy syndrome caused by mutation of the manganese and zinc transporter gene SLC39A8. Am J Hum Genet. 2015;97(6):886–93.

    Article  CAS  Google Scholar 

  • Bras J, Verloes A, Schneider SA, Mole SE, Guerreiro RJ. Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Hum Mol Genet. 2012;21(12):2646–50.

    Article  CAS  Google Scholar 

  • Chen P, Chakraborty S, Mukhopadhyay S, Lee E, Paoliello MM, Bowman AB, et al. Manganese homeostasis in the nervous system. J Neurochem. 2015;134(4):601–10.

    Article  CAS  Google Scholar 

  • Christenson ET, Gallegos AS, Banerjee A. In vitro reconstitution, functional dissection, and mutational analysis of metal ion transport by mitoferrin-1. J Biol Chem. 2018;293(10):3819–28.

    Article  CAS  Google Scholar 

  • Clayton PT. Inherited disorders of transition metal metabolism: an update. J Inherit Metab Dis. 2017;40(4):519–29.

    Article  CAS  Google Scholar 

  • Di Fonzo A, Chien HF, Socal M, Giraudo S, Tassorelli C, Iliceto G, et al. ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology. 2007;68(19):1557–62.

    Article  Google Scholar 

  • Estrada-Cuzcano A, Martin S, Chamova T, Synofzik M, Timmann D, Holemans T, et al. Loss-of-function mutations in the ATP13A2/PARK9 gene cause complicated hereditary spastic paraplegia (SPG78). Brain. 2017;140(2):287–305.

    Article  Google Scholar 

  • Gospe SM Jr, Caruso RD, Clegg MS, Keen CL, Pimstone NR, Ducore JM, et al. Paraparesis, hypermanganesaemia, and polycythaemia: a novel presentation of cirrhosis. Arch Dis Child. 2000;83(5):439–42.

    Article  Google Scholar 

  • Gulab S, Kayyali HR, Al-Said Y. Atypical neurologic phenotype and novel SLC30A10 mutation in two brothers with hereditary hypermanganesemia. Neuropediatrics. 2018;49(1):72–5.

    Article  CAS  Google Scholar 

  • Hutchens S, Liu C, Jursa T, Shawlot W, Chaffee BK, Yin W, et al. Deficiency in the manganese efflux transporter SLC30A10 induces severe hypothyroidism in mice. J Biol Chem. 2017;292(23):9760–73.

    Article  CAS  Google Scholar 

  • Leyva-Illades D, Chen P, Zogzas CE, Hutchens S, Mercado JM, Swaim CD, et al. SLC30A10 is a cell surface-localized manganese efflux transporter, and Parkinsonism-causing mutations block its intracellular trafficking and efflux activity. J Neurosci. 2014;34(42):14079–95.

    Article  Google Scholar 

  • Park JH, Hogrebe M, Gruneberg M, DuChesne I, von der Heiden AL, Reunert J, et al. SLC39A8 deficiency: a disorder of manganese transport and glycosylation. Am J Hum Genet. 2015a;97(6):894–903.

    Article  CAS  Google Scholar 

  • Park JS, Blair NF, Sue CM. The role of ATP13A2 in Parkinson’s disease: Clinical phenotypes and molecular mechanisms. Mov Disord. 2015b;30(6):770–9.

    Article  CAS  Google Scholar 

  • Park JH, Hogrebe M, Fobker M, Brackmann R, Fiedler B, Reunert J, et al. SLC39A8 deficiency: biochemical correction and major clinical improvement by manganese therapy. Genet Med. 2017;20(2):259–68.

    Article  Google Scholar 

  • Peres TV, Schettinger MR, Chen P, Carvalho F, Avila DS, Bowman AB, et al. Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies. BMC Pharmacol Toxicol. 2016;17(1):57.

    Article  Google Scholar 

  • Quadri M, Federico A, Zhao T, Breedveld GJ, Battisti C, Delnooz C, et al. Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease. Am J Hum Genet. 2012;90(3):467–77.

    Article  CAS  Google Scholar 

  • Quadri M, Kamate M, Sharma S, Olgiati S, Graafland J, Breedveld GJ, et al. Manganese transport disorder: Novel SLC30A10 mutations and early phenotypes. Mov Disord. 2015;30(7):996–1001.

    Article  CAS  Google Scholar 

  • Racette BA, Aschner M, Guilarte TR, Dydak U, Criswell SR, Zheng W. Pathophysiology of manganese-associated neurotoxicity. Neurotoxicology. 2012;33(4):881–6.

    Article  CAS  Google Scholar 

  • Riley LG, Cowley MJ, Gayevskiy V, Roscioli T, Thorburn DR, Prelog K, et al. A SLC39A8 variant causes manganese deficiency, and glycosylation and mitochondrial disorders. J Inherit Metab Dis. 2017;40(2):261–9.

    Article  CAS  Google Scholar 

  • Schneider SA, Paisan-Ruiz C, Quinn NP, Lees AJ, Houlden H, Hardy J, et al. ATP13A2 mutations (PARK9) cause neurodegeneration with brain iron accumulation. Mov Disord. 2010;25(8):979–84.

    Article  Google Scholar 

  • Sorensen DM, Holemans T, van Veen S, Martin S, Arslan T, Haagendahl IW, et al. Parkinson disease related ATP13A2 evolved early in animal evolution. uPLoS One. 2018;13(3):e0193228.

    Article  Google Scholar 

  • Tuschl K, Clayton PT, Gospe SM, Mills PB. Dystonia/parkinsonism, hypermanganesemia, polycythemia, and chronic liver disease. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, Amemiya A, editors. SourceGeneReviews®. Seattle, WA: University of Washington, Seattle; 1993–2019.

    Google Scholar 

  • Tuschl K, Gregory A, Meyer E, Clayton PT, Hayflick SJ, Mills PB, et al. SLC39A14 deficiency. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, editors. SourceGeneReviews®. Seattle, WA: University of Washington, Seattle; 1993–2019.

    Google Scholar 

  • Tuschl K, Clayton PT, Gospe SM Jr, Gulab S, Ibrahim S, Singhi P, et al. Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man. Am J Hum Genet. 2012;90(3):457–66.

    Article  CAS  Google Scholar 

  • Tuschl K, Meyer E, Valdivia LE, Zhao N, Dadswell C, Abdul-Sada A, et al. Mutations in SLC39A14 disrupt manganese homeostasis and cause childhood-onset parkinsonism-dystonia. Nat Commun. 2016;7:11601.

    Article  CAS  Google Scholar 

  • Zaki MS, Issa MY, Elbendary HM, El-Karaksy H, Hosny H, Ghobrial C, et al. Hypermanganesemia with dystonia, polycythemia and cirrhosis in 10 patients: Six novel SLC30A10 mutations and further phenotype delineation. Clin Genet. 2018;93(4):905–12.

    Article  CAS  Google Scholar 

  • Zeglam A, Abugrara A, Kabuka M. Autosomal-recessive iron deficiency anemia, dystonia and hypermanganesemia caused by new variant mutation of the manganese transporter gene SLC39A14. Acta Neurol Belg. 2018; https://doi.org/10.1007/s13760-018-1024-7.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Tuschl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tuschl, K., Mills, P.B., Clayton, P.T. (2022). Disorders of Manganese Metabolism. In: Blau, N., Dionisi Vici, C., Ferreira, C.R., Vianey-Saban, C., van Karnebeek, C.D.M. (eds) Physician's Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-67727-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67727-5_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67726-8

  • Online ISBN: 978-3-030-67727-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics