Skip to main content
  • 1878 Accesses

Summary

Iron (Fe) is an essential element for almost every living organism. In humans and other mammals, iron homeostasis evolved to prevent iron excess, which leads to reactive and toxic oxygen species causing cell damage. This situation is attained by mechanisms for efficient regulation and internal iron recycling; however, this sophisticated control limiting iron absorption may easily promote the development of iron deficiency. Other than secondary iron overload conditions (i.e., transfusional iron overload or iron-loading anemias) and secondary iron deficiency, there are several genetically determined iron disorders. The first type of inherited iron-related disorder is “Hereditary Hemochromatosis (HH),” caused by mutations in genes maintaining Fe homeostasis. Different types of HH have been discovered; however, regardless of the mutated gene, the final outcome is an inappropriate hepcidin expression. The most common type of HH (type I) is caused by a mutation in HFE, with adult onset, and it accounts for >80% of all hemochromatosis patients, mostly Caucasian. The prevalent p.Cys282Tyr substitution leads to the inability of HFE to sense increased levels of Fe and interact with TfR1, which causes decreased hepcidin expression. Type II or juvenile HH, due to hemojuvelin (HJV) or hepcidin mutations, is a more severe disorder that affects younger individuals and causes a fast and heavy Fe overload in the liver and parenchyma. Type III HH is rare; it is similar to type 1, but is caused by mutations in the TFR2 gene. Type IV HH differs from the other ones for having an autosomal dominant transmission and for not directly affecting hepcidin expression. It is caused by mutations in the SLC40A1 gene, which encodes the Fe exporter ferroportin (Fpn), namely the hepcidin target. HH in general is not associated with anemia, whereas the conditions with iron overload associated with anemia suggest congenital atransferrinemia, hereditary aceruloplasminemia, and divalent cation transporter 1 (DMT1)-related iron overload. Finally, there are genetic defects that cause iron deficiency such as mutations occurring in TMPRSS6 (matriptase 2) responsible for an iron-refractory iron deficiency anemia (IRIDA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams PC, Barton JC. How I treat hemochromatosis. Blood. 2010;116:317–25.

    Article  CAS  Google Scholar 

  • Allen KJ, Gurrin LC, Constantine CC, Osborne NJ, et al. Iron-overload-related disease in HFE hereditary hemochromatosis. N Engl J Med. 2008;358(3):221–30.

    Article  CAS  Google Scholar 

  • Anderson GJ, Frazer DM. Current understanding of iron homeostasis. Am J Clin Nutr. 2017;106:1559S–66S.

    Article  Google Scholar 

  • Andrews NC. Forging a field: the golden age of iron biology. Blood. 2008;112:219–30.

    Article  CAS  Google Scholar 

  • Arezes J, Foy N, McHugh K, et al. Erythroferrone inhibits the induction of hepcidin by BMP6. Blood. 2018;132:1473–7.

    Article  CAS  Google Scholar 

  • Beaumont-Epinette MP, Delobel JB, Ropert M, et al. Hereditary hypotransferrinemia can lead to elevated transferrin saturation and when associated to HFE or HAMP mutations to iron overload. Blood Cells Mol Dis. 2015;54:151–4.

    Article  CAS  Google Scholar 

  • Brissot P, Pietrangelo A, Adams PC. Hemochromatosis. Nat Rev Dis Primers. 2018; article 18016.

    Google Scholar 

  • Brissot P, Troadec MB, Loréal O, Brissot E. Pathophysiology and classification of iron overload diseases; update 2018. Transfus Clin Biol. 2019;26:80–8.

    Article  Google Scholar 

  • Camaschella C. Iron deficiency. Blood. 2019;133:30–9.

    Article  CAS  Google Scholar 

  • Coffey R, Ganz T. Iron Homestasis: an anthropocentric perspective. J Biol Chem. 2017;292(31):12727–34.

    Article  CAS  Google Scholar 

  • Ganz T. Systemic iron homeostasis. Physiol Rev. 2013;93:1721–41.

    Article  CAS  Google Scholar 

  • Ganz T, Nemeth E. Iron homeostasis in host defence and inflammation. Nat Rev Immunol. 2015;15:500–10.

    Article  CAS  Google Scholar 

  • Iolascon A, Camaschella C, Pospisilova D, et al. Natural history of recessive inheritance of DMT1 mutations. J Pediatr. 2008;152:136–9.

    Article  CAS  Google Scholar 

  • Katsarou A, Pantopoulos K. Hepcidin therapeutics. Pharmaceuticals. 2018;11:E127.

    Article  Google Scholar 

  • Kawabata H. Transferrin and transferrin receptors update. Free Radic Biol Med. 2019;133:46–54.

    Article  CAS  Google Scholar 

  • Kong X, Xie L, Zhu H, et al. Genotypic and phenotypic spectra of hemojuvelin mutations in primary hemochromatosis patients: a systematic review. Orphanet J Rare Dis. 2019;14:171.

    Article  Google Scholar 

  • Kono S. Aceruloplasminemia: an update. Int Rev Neurobiol. 2013;110:125–51.

    Article  CAS  Google Scholar 

  • Kowdley KV, Brown KE, Ahn J, Sundaram V. ACG clinical guideline: hereditary hemochromatosis. Am J Gastroenterol. 2019;114:1202–18.

    Article  Google Scholar 

  • Kuwata T, Okada Y, Yamamoto T, et al. Structure, function, folding and aggregation of a Neuroferritinopathy-related ferritin variant. Biochemistry. 2019;58:2318–25.

    Article  CAS  Google Scholar 

  • Muckenthaler MU, Galy B, Hentze MW. Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr. 2008;28:197–213.

    Article  CAS  Google Scholar 

  • Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306:2090–3.

    Article  CAS  Google Scholar 

  • Papanikolaou G, Pantopoulos K. Systemic iron homeostasis and erythropoiesis. IUBMB Life. 2017;69:399–413.

    Article  CAS  Google Scholar 

  • Pietrangelo A. Ferroportin disease: pathogenesis, diagnosis and treatment. Haematologica. 2017;102(12):1972–84.

    Article  CAS  Google Scholar 

  • Piperno A, Alessio M. Aceruloplasminemia: waiting for an efficient therapy. Front Neurosci. 2018;12:903.

    Article  Google Scholar 

  • Rombout-Sestrienkova E, van Kraij MG, Koek GH. How we manage patients with hereditary hemochromatosis. Br J Haematol. 2016;175:759–70.

    Article  Google Scholar 

  • Silvestri L, Pagani A, Nai A, et al. The serine pro- tease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab. 2008;8(6):502–11.

    Article  CAS  Google Scholar 

  • Tsantoula F, Kioumi A, Germenis AE, Speletas M. Hereditary hyperferritinemia cataract syndrome as a cause of childhood hyperferritinemia. J Pediatr Hematol Oncol. 2014;36:304.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Domenica Cappellini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cappellini, M.D. (2022). Disorders of Iron Metabolism. In: Blau, N., Dionisi Vici, C., Ferreira, C.R., Vianey-Saban, C., van Karnebeek, C.D.M. (eds) Physician's Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-67727-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67727-5_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67726-8

  • Online ISBN: 978-3-030-67727-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics