Skip to main content

Enhancing Robustness of Graph Convolutional Networks via Dropping Graph Connections

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12459))

Abstract

Graph convolutional networks (GCNs) have emerged as one of the most popular neural networks for a variety of tasks over graphs. Despite their remarkable learning and inference ability, GCNs are still vulnerable to adversarial attacks that imperceptibly perturb graph structures and node features to degrade the performance of GCNs, which poses serious threats to the real-world applications. Inspired by the observations from recent studies suggesting that edge manipulations play a key role in graph adversarial attacks, in this paper, we take those attack behaviors into consideration and design a biased graph-sampling scheme to drop graph connections such that random, sparse and deformed subgraphs are constructed for training and inference. This method yields a significant regularization on graph learning, alleviates the sensitivity to edge manipulations, and thus enhances the robustness of GCNs. We evaluate the performance of our proposed method, while the experimental results validate its effectiveness against adversarial attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu-El-Haija, S., et al.: Mixhop: higher-order graph convolutional architectures via sparsified neighborhood mixing. In: International Conference on Machine Learning, pp. 21–29 (2019)

    Google Scholar 

  2. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Analy. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  3. Biggio, B., Fumera, G., Roli, F.: Multiple classifier systems for robust classifier design in adversarial environments. Int. J. Mach. Learn. Cybern. 1(1–4), 27–41 (2010)

    Article  Google Scholar 

  4. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (sp), pp. 39–57. IEEE (2017)

    Google Scholar 

  5. Chen, J., Zhu, J., Song, L.: Stochastic training of graph convolutional networks with variance reduction. arXiv preprint arXiv:1710.10568 (2017)

  6. Chen, J., Ma, T., Xiao, C.: Fastgcn: fast learning with graph convolutional networks via importance sampling. arXiv preprint arXiv:1801.10247 (2018)

  7. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  8. Chen, L., Hou, S., Ye, Y.: Securedroid: enhancing security of machine learning-based detection against adversarial android malware attacks. In: Proceedings of the 33rd Annual Computer Security Applications Conference, pp. 362–372 (2017)

    Google Scholar 

  9. Dai, H., et al.: Adversarial attack on graph structured data. arXiv preprint arXiv:1806.02371 (2018)

  10. Demontis, A., et al.: Yes, machine learning can be more secure! a case study on android Malware detection. IEEE Trans. Depend. Secure Comput. 16(4), 711–724 (2017)

    Article  Google Scholar 

  11. Gao, H., Wang, Z., Ji, S.: Large-scale learnable graph convolutional networks. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1416–1424 (2018)

    Google Scholar 

  12. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  13. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034 (2017)

    Google Scholar 

  14. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  15. Huang, W., Zhang, T., Rong, Y., Huang, J.: Adaptive sampling towards fast graph representation learning. In: Advances in Neural Information Processing Systems, pp. 4558–4567 (2018)

    Google Scholar 

  16. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  17. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  18. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  19. Liu, S., Chen, L., Dong, H., Wang, Z., Wu, D., Huang, Z.: Higher-order weighted graph convolutional networks. arXiv preprint arXiv:1911.04129 (2019)

  20. Rong, Y., Huang, W., Xu, T., Huang, J.: Dropedge: towards deep graph convolutional networks on node classification. In: International Conference on Learning Representations (2020)

    Google Scholar 

  21. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

  23. Tang, X., Li, Y., Sun, Y., Yao, H., Mitra, P., Wang, S.: Transferring robustness for graph neural network against poisoning attacks. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 600–608 (2020)

    Google Scholar 

  24. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  25. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  26. Wu, H., Wang, C., Tyshetskiy, Y., Docherty, A., Lu, K., Zhu, L.: Adversarial examples for graph data: deep insights into attack and defense. In: International Joint Conference on Artificial Intelligence, IJCAI, pp. 4816–4823 (2019)

    Google Scholar 

  27. Xu, K., et al.: Topology attack and defense for graph neural networks: An optimization perspective. arXiv preprint arXiv:1906.04214 (2019)

  28. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? ICLR (2019)

    Google Scholar 

  29. Yang, Z., Cohen, W., Salakhudinov, R.: Revisiting semi-supervised learning with graph embeddings. In: International Conference on Machine Learning, pp. 40–48 (2016)

    Google Scholar 

  30. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph convolutional neural networks for web-scale recommender systems. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974–983 (2018)

    Google Scholar 

  31. Zeng, H., Zhou, H., Srivastava, A., Kannan, R., Prasanna, V.: Graphsaint: graph sampling based inductive learning method. In: International Conference on Learning Representations (2020)

    Google Scholar 

  32. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architecture for graph classification. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  33. Zhu, D., Zhang, Z., Cui, P., Zhu, W.: Robust graph convolutional networks against adversarial attacks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1399–1407 (2019)

    Google Scholar 

  34. Zügner, D., Akbarnejad, A., Günnemann, S.: Adversarial attacks on neural networks for graph data. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2847–2856 (2018)

    Google Scholar 

  35. Zügner, D., Günnemann, S.: Adversarial attacks on graph neural networks via meta learning. arXiv preprint arXiv:1902.08412 (2019)

Download references

Acknowledgments

We thank the reviewers for their valuable feedback. The work was supported in part by the National Science Foundation (NSF) under grant CNS-1652790 and a seed grant from Penn State Center for Security Research and Education (CSRE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinghao Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, L., Li, X., Wu, D. (2021). Enhancing Robustness of Graph Convolutional Networks via Dropping Graph Connections. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12459. Springer, Cham. https://doi.org/10.1007/978-3-030-67664-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67664-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67663-6

  • Online ISBN: 978-3-030-67664-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics