Skip to main content

Probabilistic Reconciliation of Hierarchical Forecast via Bayes’ Rule

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12459))

Abstract

We present a novel approach for reconciling hierarchical forecasts, based on Bayes’ rule. We define a prior distribution for the bottom time series of the hierarchy, based on the bottom base forecasts. Then we update their distribution via Bayes’ rule, based on the base forecasts for the upper time series. Under the Gaussian assumption, we derive the updating in closed-form. We derive two algorithms, which differ as for the assumed independencies. We discuss their relation with the MinT reconciliation algorithm and with the Kalman filter, and we compare them experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Athanasopoulos, G., Gamakumara, P., Panagiotelis, A., Hyndman, R., M., A.: Hierarchical forecasting. In: Macroeconomic Forecasting in the Era of Big Data pp. 689–719 (2020)

    Google Scholar 

  2. Benavoli, A., Corani, G., Demšar, J., Zaffalon, M.: Time for a change: a tutorial for comparing multiple classifiers through Bayesian analysis. J. Mach. Learn. Res. 18(1), 2653–2688 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Bishop, C.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  4. Corani, G., Benavoli, A., Demšar, J., Mangili, F., Zaffalon, M.: Statistical comparison of classifiers through Bayesian hierarchical modelling. Mach. Learn. 106(11), 1817–1837 (2017). https://doi.org/10.1007/s10994-017-5641-9

    Article  MathSciNet  MATH  Google Scholar 

  5. Durrant-Whyte, H., Henderson, T.C.: Multisensor data fusion. Springer Handbook of Robotics, pp. 585–610 (2008)

    Google Scholar 

  6. Gamakumara, P., Panagiotelis, A., Athanasopoulos, G., Hyndman, R.: Probabilisitic forecasts in hierarchical time series. Monash University, Department of Econometrics and Business Statistics, Technical report (2018)

    Google Scholar 

  7. Gneiting, T., Raftery, A.E.: Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. 102(477), 359–378 (2007)

    Article  MathSciNet  Google Scholar 

  8. Hyndman, R., Lee, A., Wang, E., Wickramasuriya, S.: HTS: hierarchical and grouped time series (2018). https://CRAN.R-project.org/package=hts, R package version 5.1.5

  9. Hyndman, R.J., Ahmed, R.A., Athanasopoulos, G., Shang, H.L.: Optimal combination forecasts for hierarchical time series. Comput. Stat. Data Anal. 55(9), 2579–2589 (2011)

    Article  MathSciNet  Google Scholar 

  10. Hyndman, R.J., Khandakar, Y.: Automatic time series forecasting: the forecast package for R. J. Stat. Softw. 3(27), 1–22 (2008)

    Google Scholar 

  11. Lacoste, A., Laviolette, F., Marchand, M.: Bayesian comparison of machine learning algorithms on single and multiple datasets. In: Proceedings of the 15th International Conference on Artificial Intelligence and Statistics, pp. 665–675 (2012)

    Google Scholar 

  12. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2012)

    Google Scholar 

  13. Park, M., Nassar, M.: Variational Bayesian inference for forecasting hierarchical time series. In: ICML 2014 Workshop on Divergence Methods for Probabilistic Inference, pp. 1–6 (2014)

    Google Scholar 

  14. Roweis, S., Ghahramani, Z.: A unifying review of linear Gaussian models. Neural Comput. 11(2), 305–345 (1999)

    Article  Google Scholar 

  15. Schäfer, J., Strimmer, K.: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stati. Appl. Genet. Mol. Biol. 4(1), (2005)

    Google Scholar 

  16. Simon, D.: Optimal state estimation: Kalman, H infinity and nonlinear approaches. John Wiley & Sons (2006)

    Google Scholar 

  17. Taieb, S.B., Taylor, J.W., Hyndman, R.J.: Coherent probabilistic forecasts for hierarchical time series. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 3348–3357 (2017)

    Google Scholar 

  18. Wickramasuriya, S.L., Athanasopoulos, G., Hyndman, R.J.: Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. J. Am. Stat. Assoc. 114(526), 804–819 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge support from grant n. 407540_167199 / 1 from Swiss NSF (NRP 75 Big Data).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Corani .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 239 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Corani, G., Azzimonti, D., Augusto, J.P.S.C., Zaffalon, M. (2021). Probabilistic Reconciliation of Hierarchical Forecast via Bayes’ Rule. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12459. Springer, Cham. https://doi.org/10.1007/978-3-030-67664-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67664-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67663-6

  • Online ISBN: 978-3-030-67664-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics