Skip to main content

Adversarial Learned Molecular Graph Inference and Generation

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12458))

Abstract

Recent methods for generating novel molecules use graph representations of molecules and employ various forms of graph convolutional neural networks for inference. However, training requires solving an expensive graph isomorphism problem, which previous approaches do not address or solve only approximately. In this work, we propose ALMGIG, a likelihood-free adversarial learning framework for inference and de novo molecule generation that avoids explicitly computing a reconstruction loss. Our approach extends generative adversarial networks by including an adversarial cycle-consistency loss to implicitly enforce the reconstruction property. To capture properties unique to molecules, such as valence, we extend the Graph Isomorphism Network to multi-graphs. To quantify the performance of models, we propose to compute the distance between distributions of physicochemical properties with the 1-Wasserstein distance. We demonstrate that ALMGIG more accurately learns the distribution over the space of molecules than all baselines. Moreover, it can be utilized for drug discovery by efficiently searching the space of molecules using molecules’ continuous latent representation. Our code is available at https://github.com/ai-med/almgig.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: 34th International Conference on Machine Learning, vol. 70, pp. 214–223 (2017)

    Google Scholar 

  2. Blaschke, T., Olivecrona, M., Engkvist, O., Bajorath, J., Chen, H.: Application of generative autoencoder in de Novo molecular design. Mol. Inf. 37(1–2), 1700123 (2018)

    Article  Google Scholar 

  3. Bradshaw, J., Paige, B., Kusner, M.J., Segler, M., Hernández-Lobato, J.M.: A model to search for synthesizable molecules. In: Advances in Neural Information Processing Systems, vol. 32, pp. 7937–7949 (2019)

    Google Scholar 

  4. Brown, N., Fiscato, M., Segler, M.H., Vaucher, A.C.: GuacaMol: benchmarking models for de Novo molecular design. J. Chem. Inf. Model. 59(3), 1096–1108 (2019)

    Article  Google Scholar 

  5. Dai, H., Tian, Y., Dai, B., Skiena, S., Song, L.: Syntax-directed variational autoencoder for structured data. In: 6th International Conference on Learning Representations (2018)

    Google Scholar 

  6. De Cao, N., Kipf, T.: MolGAN: an implicit generative model for small molecular graphs (2018). https://arxiv.org/abs/1805.11973

  7. Dumoulin, V., et al.: Adversarially learned inference. In: 5th International Conference on Learning Representations (2017)

    Google Scholar 

  8. Gómez-Bombarelli, R., Wei, J.N., Duvenaud, D., Hernández-Lobato, J.M., Sánchez-Lengeling, B., et al.: Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4(2), 268–276 (2018)

    Article  Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680 (2014)

    Google Scholar 

  10. Guimaraes, G.L., Sanchez-Lengeling, B., Outeiral, C., Farias, P.L.C., Aspuru-Guzik, A.: Objective-reinforced generative adversarial networks (ORGAN) for sequence generation models (2017). https://arxiv.org/abs/1705.10843

  11. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, vol. 30, pp. 5767–5777 (2017)

    Google Scholar 

  12. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., et al.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30, pp. 6626–6637 (2017)

    Google Scholar 

  13. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with Gumbel-softmax. In: 5th International Conference on Learning Representations (2017)

    Google Scholar 

  14. Jin, W., Barzilay, R., Jaakkola, T.: Junction tree variational autoencoder for molecular graph generation. In: 35th International Conference on Machine Learning, pp. 2323–2332 (2018)

    Google Scholar 

  15. Kadurin, A., Nikolenko, S., Khrabrov, K., Aliper, A., Zhavoronkov, A.: druGAN: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Mol. Pharm. 14(9), 3098–3104 (2017)

    Article  Google Scholar 

  16. Kusner, M.J., Paige, B., Hernández-Lobato, J.M.: Grammar variational autoencoder. In: 34th International Conference on Machine Learning, pp. 1945–1954 (2017)

    Google Scholar 

  17. Li, C., et al.: ALICE: towards understanding adversarial learning for joint distribution matching. In: Advances in Neural Information Processing Systems, vol. 30, pp. 5495–5503 (2017)

    Google Scholar 

  18. Li, Y., Zhang, L., Liu, Z.: Multi-objective de novo drug design with conditional graph generative model. J. Cheminform. 10, 33 (2018)

    Article  Google Scholar 

  19. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural networks. In: 4th International Conference on Learning Representations (2016)

    Google Scholar 

  20. Li, Y., Vinyals, O., Dyer, C., Pascanu, R., Battaglia, P.: Learning deep generative models of graphs (2018). https://arxiv.org/abs/1803.03324

  21. Lim, J., Ryu, S., Kim, J.W., Kim, W.Y.: Molecular generative model based on conditional variational autoencoder for de novo molecular design. J. Cheminform. 10, 31 (2018)

    Article  Google Scholar 

  22. Liu, Q., Allamanis, M., Brockschmidt, M., Gaunt, A.: Constrained graph variational autoencoders for molecule design. In: Advances in Neural Information Processing Systems, vol. 31, pp. 7806–7815 (2018)

    Google Scholar 

  23. Ma, T., Chen, J., Xiao, C.: Constrained generation of semantically valid graphs via regularizing variational autoencoders. In: Advances in Neural Information Processing Systems, vol. 31, pp. 7113–7124 (2018)

    Google Scholar 

  24. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: a continuous relaxation of discrete random variables. In: 5th International Conference on Learning Representations (2017)

    Google Scholar 

  25. Olivecrona, M., Blaschke, T., Engkvist, O., Chen, H.: Molecular de-novo design through deep reinforcement learning. J. Cheminform. 9, 48 (2017)

    Article  Google Scholar 

  26. Podda, M., Bacciu, D., Micheli, A.: A deep generative model for fragment-based molecule generation. In: Proceedings of AISTATS (2020)

    Google Scholar 

  27. Polishchuk, P.G., Madzhidov, T.I., Varnek, A.: Estimation of the size of drug-like chemical space based on GDB-17 data. J. Comput. Aided Mol. Des. 27(8), 675–679 (2013)

    Article  Google Scholar 

  28. Pölsterl, S., Wachinger, C.: Adversarial learned molecular graph inference and generation (2020). https://arxiv.org/abs/1905.10310

  29. Popova, M., Isayev, O., Tropsha, A.: Deep reinforcement learning for de novo drug design. Sci. Adv. 4(7), eaap7885 (2018)

    Article  Google Scholar 

  30. Putin, E., et al.: Adversarial threshold neural computer for molecular de novo design. Mol. Pharm. 15(10), 4386–4397 (2018)

    Article  Google Scholar 

  31. Ramakrishnan, R., Dral, P.O., Rupp, M., von Lilienfeld, O.A.: Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data 1, 1–7 (2014)

    Article  Google Scholar 

  32. Rogers, D., Hahn, M.: Extended-connectivity fingerprints. J. Chem. Inf. Model. 50(5), 742–754 (2010)

    Article  Google Scholar 

  33. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)

    Article  Google Scholar 

  34. Samanta, B., De, A., Jana, G., Ganguly, N., Gomez-Rodriguez, M.: NeVAE: a deep generative model for molecular graphs. In: 33rd AAAI Conference on Artificial Intelligence, pp. 1110–1117 (2019)

    Google Scholar 

  35. Segler, M.H.S., Kogej, T., Tyrchan, C., Waller, M.P.: Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent. Sci. 4(1), 120–131 (2018)

    Article  Google Scholar 

  36. Simonovsky, M., Komodakis, N.: GraphVAE: towards generation of small graphs using variational autoencoders. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11139, pp. 412–422. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01418-6_41

    Chapter  Google Scholar 

  37. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? In: 7th International Conference on Learning Representations (2019)

    Google Scholar 

  38. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.I., Jegelka, S.: Representation Learning on Graphs with Jumping Knowledge Networks. In: 35th International Conference on Machine Learning, pp. 5453–5462 (2018)

    Google Scholar 

  39. You, J., Liu, B., Ying, R., Pande, V., Leskovec, J.: Graph convolutional policy network for goal-directed molecular graph generation. In: Advances in Neural Information Processing Systems, vol. 31, pp. 6412–6422 (2018)

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Bavarian State Ministry of Education, Science and the Arts in the framework of the Centre Digitisation.Bavaria (ZD.B), and the Federal Ministry of Education and Research in the call for Computational Life Sciences (DeepMentia, 031L0200A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Pölsterl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pölsterl, S., Wachinger, C. (2021). Adversarial Learned Molecular Graph Inference and Generation. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12458. Springer, Cham. https://doi.org/10.1007/978-3-030-67661-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67661-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67660-5

  • Online ISBN: 978-3-030-67661-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics