Skip to main content

Sparse Separable Nonnegative Matrix Factorization

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2020)

Abstract

We propose a new variant of nonnegative matrix factorization (NMF), combining separability and sparsity assumptions. Separability requires that the columns of the first NMF factor are equal to columns of the input matrix, while sparsity requires that the columns of the second NMF factor are sparse. We call this variant sparse separable NMF (SSNMF), which we prove to be NP-complete, as opposed to separable NMF which can be solved in polynomial time. The main motivation to consider this new model is to handle underdetermined blind source separation problems, such as multispectral image unmixing. We introduce an algorithm to solve SSNMF, based on the successive nonnegative projection algorithm (SNPA, an effective algorithm for separable NMF), and an exact sparse nonnegative least squares solver. We prove that, in noiseless settings and under mild assumptions, our algorithm recovers the true underlying sources. This is illustrated by experiments on synthetic data sets and the unmixing of a multispectral image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It stands for brassens Relies on Assumptions of Separability and Sparsity for Elegant NMF Solving.

  2. 2.

    https://gitlab.com/nnadisic/ssnmf.

References

  1. Araújo, M.C.U., Saldanha, T.C.B., Galvão, R.K.H., Yoneyama, T., Chame, H.C., Visani, V.: The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemometr. Intell. Lab. Syst. 57(2), 65–73 (2001)

    Article  Google Scholar 

  2. Arora, S., Ge, R., Kannan, R., Moitra, A.: Computing a nonnegative matrix factorization – provably. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, pp. 145–162 (2012)

    Google Scholar 

  3. Bioucas-Dias, J.M., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P., Chanussot, J.: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 5(2), 354–379 (2012)

    Article  Google Scholar 

  4. Cohen, J.E., Gillis, N.: Nonnegative low-rank sparse component analysis. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8226–8230 (2019)

    Google Scholar 

  5. El Ghaoui, L., Viallon, V., Rabbani, T.: Safe feature elimination in sparse supervised learning technical report no. Technical report, UC/EECS-2010-126, EECS Department, University of California at Berkeley (2010)

    Google Scholar 

  6. Fu, X., Huang, K., Sidiropoulos, N.D., Ma, W.K.: Nonnegative matrix factorization for signal and data analytics: identifiability, algorithms, and applications. IEEE Signal Process. Mag. 36(2), 59–80 (2019)

    Article  Google Scholar 

  7. Gillis, N.: Successive nonnegative projection algorithm for robust nonnegative blind source separation. SIAM J. Imag. Sci. 7, 1420–1450 (2014)

    Article  MathSciNet  Google Scholar 

  8. Gillis, N.: The why and how of nonnegative matrix factorization. Regularization, optimization, kernels, and support vector machines 12(257), 257–291 (2014)

    Google Scholar 

  9. Hoyer, P.O.: Non-negative sparse coding. In: Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing, pp. 557–565 (2002)

    Google Scholar 

  10. Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5, 1457–1469 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Kim, H., Park, H.: Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics 23(12), 1495–1502 (2007)

    Article  Google Scholar 

  12. Kumar, A., Sindhwani, V., Kambadur, P.: Fast conical hull algorithms for near-separable non-negative matrix factorization. In: Proceedings of the 30th International Conference on Machine Learning (2013)

    Google Scholar 

  13. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  14. Ma, W.K., et al.: A signal processing perspective on hyperspectral unmixing: insights from remote sensing. IEEE Signal Process. Mag. 31(1), 67–81 (2014)

    Article  Google Scholar 

  15. Naanaa, W., Nuzillard, J.M.: Blind source separation of positive and partially correlated data. Sig. Process. 85(9), 1711–1722 (2005)

    Article  Google Scholar 

  16. Nadisic, N., Vandaele, A., Gillis, N., Cohen, J.E.: Exact sparse nonnegative least squares. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5395–5399 (2020)

    Google Scholar 

  17. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234 (1995)

    Article  MathSciNet  Google Scholar 

  18. Sun, Y., Xin, J.: Underdetermined sparse blind source separation of nonnegative and partially overlapped data. SIAM J. Sci. Comput. 33(4), 2063–2094 (2011)

    Article  MathSciNet  Google Scholar 

  19. Vavasis, S.A.: On the complexity of nonnegative matrix factorization. SIAM J. Optim. 20(3), 1364–1377 (2010)

    Article  MathSciNet  Google Scholar 

  20. Zhu, F.: Hyperspectral unmixing: ground truth labeling, datasets, benchmark performances and survey. arXiv preprint arXiv:1708.05125 (2017)

  21. Zhu, F., Wang, Y., Xiang, S., Fan, B., Pan, C.: Structured sparse method for hyperspectral unmixing. ISPRS J. Photogram. Remote Sens. 88, 101–118 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the reviewers, whose insightful comments helped improve the paper. NN and NG acknowledge the support by the European Research Council (ERC starting grant No 679515), and by the Fonds de la Recherche Scientifique - FNRS and the Fonds Wetenschappelijk Onderzoek - Vlanderen (FWO) under EOS project O005318F-RG47.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Nadisic .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 241 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nadisic, N., Vandaele, A., Cohen, J.E., Gillis, N. (2021). Sparse Separable Nonnegative Matrix Factorization. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12457. Springer, Cham. https://doi.org/10.1007/978-3-030-67658-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67658-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67657-5

  • Online ISBN: 978-3-030-67658-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics