Skip to main content

Modeling Dynamic Heterogeneous Network for Link Prediction Using Hierarchical Attention with Temporal RNN

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12457))

Abstract

Network embedding aims to learn low-dimensional representations of nodes while capturing structure information of networks. It has achieved great success on many tasks of network analysis such as link prediction and node classification. Most of existing network embedding algorithms focus on how to learn static homogeneous networks effectively. However, networks in the real world are more complex, e.g.., networks may consist of several types of nodes and edges (called heterogeneous information) and may vary over time in terms of dynamic nodes and edges (called evolutionary patterns). Limited work has been done for network embedding of dynamic heterogeneous networks as it is challenging to learn both evolutionary and heterogeneous information simultaneously. In this paper, we propose a novel dynamic heterogeneous network embedding method, termed as DyHATR, which uses hierarchical attention to learn heterogeneous information and incorporates recurrent neural networks with temporal attention to capture evolutionary patterns. We benchmark our method on four real-world datasets for the task of link prediction. Experimental results show that DyHATR significantly outperforms several state-of-the-art baselines.

L. Yang—Equal Contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://snap.stanford.edu/data/higgs-twitter.html.

  2. 2.

    http://snap.stanford.edu/data/sx-mathoverflow.html.

  3. 3.

    https://tianchi.aliyun.com/competition/entrance/231719.

References

  1. Bian, R., Koh, Y.S., Dobbie, G., Divoli, A.: Network embedding and change modeling in dynamic heterogeneous networks. In: SIGIR, pp. 861–864 (2019)

    Google Scholar 

  2. Cai, H., Zheng, V.W., Chang, K.: A comprehensive survey of graph embedding: problems, techniques, and applications. IEEE TKDE 30(09), 1616–1637 (2018)

    Google Scholar 

  3. Cen, Y., Zou, X., Zhang, J., Yang, H., Zhou, J., Tang, J.: representation learning for attributed multiplex heterogeneous network. In: SIGKDD, pp. 1358–68 (2019)

    Google Scholar 

  4. Chen, J., et al.: E-LSTM-D: a deep learning framework for dynamic network link prediction. IEEE Trans. Syst. Man Cybern. Syst. 1–14 (2019)

    Google Scholar 

  5. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv:abs/1406.1078 (2014)

  6. Cui, P., Wang, X., Pei, J., Zhu, W.: A survey on network embedding. IEEE TKDE 31(05), 833–852 (2019)

    Google Scholar 

  7. Dong, Y., Chawla, N.V., Swami, A.: Metapath2Vec: scalable Representation Learning for Heterogeneous Networks. In: SIGKDD, pp. 135–144 (2017)

    Google Scholar 

  8. Du, L., Wang, Y., Song, G., Lu, Z., Wang, J.: Dynamic network embedding : an extended approach for skip-gram based network embedding. In: IJCAI, pp. 2086–2092 (2018)

    Google Scholar 

  9. Fang, H., Wu, F., Zhao, Z., Duan, X., Zhuang, Y., Ester, M.: Community-based question answering via heterogeneous social network learning. In: AAAI, pp. 122–128 (2016)

    Google Scholar 

  10. Gligorijević, V., Barot, M., Bonneau, R.: deepNF: deep network fusion for protein function prediction. Bioinformatics 34(22), 3873–3881 (2018)

    Article  Google Scholar 

  11. Goyal, P., Chhetri, S.R., Canedo, A.: dyngraph2vec: capturing network dynamics using dynamic graph representation learning. Knowl. Based Syst. 187, 104816 (2019)

    Article  Google Scholar 

  12. Goyal, P., Kamra, N., He, X., Liu, Y.: Dyngem: Deep embedding method for dynamic graphs. arXiv preprint arXiv:1805.11273 (2018)

  13. Grover, A., Leskovec, J.: Node2Vec: scalable feature learning for networks. In: SIGKDD, pp. 855–864 (2016)

    Google Scholar 

  14. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. In: NIPS, pp. 1024–1034 (2017)

    Google Scholar 

  15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  16. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  17. Kong, C., Li, H., Zhang, L., Zhu, H., Liu, T.: Link prediction on dynamic heterogeneous information networks. In: CSoNet (2019)

    Google Scholar 

  18. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection, June 2014. http://snap.stanford.edu/data

  19. Li, T., Zhang, J., Yu, P.S., Zhang, Y., Yan, Y.: Deep dynamic network embedding for link prediction. IEEE Access 6, 29219–29230 (2018)

    Article  Google Scholar 

  20. Lu, Y., Wang, X., Shi, C., Yu, P.S., Ye, Y.: Temporal network embedding with micro- and macro-dynamics. In: CIKM, p. 469–478 (2019)

    Google Scholar 

  21. Milani Fard, A., Bagheri, E., Wang, K.: Relationship prediction in dynamic heterogeneous information networks. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds.) ECIR 2019. LNCS, vol. 11437, pp. 19–34. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15712-8_2

    Chapter  Google Scholar 

  22. Nelson, W., Zitnik, M., Wang, B., Leskovec, J., Goldenberg, A., Sharan, R.: To embed or not: network embedding as a paradigm in computational biology. Front. Genet. 10, 381 (2019)

    Article  Google Scholar 

  23. Pareja, A., et al.: EvolveGCN: evolving graph convolutional networks for dynamic graphs. In: AAAI (2020)

    Google Scholar 

  24. Peng, J., Xue, H., Wei, Z., Tuncali, I., Hao, J., Shang, X.: Integrating multi-network topology for gene function prediction using deep neural networks. Brief. Bioinform. (2020)

    Google Scholar 

  25. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: SIGKDD, pp. 701–710 (2014)

    Google Scholar 

  26. Sajadmanesh, S., Bazargani, S., Zhang, J., Rabiee, H.R.: Continuous-time relationship prediction in dynamic heterogeneous information networks. ACM TKDD 13(4), 44:1–44:31 (2019)

    Google Scholar 

  27. Sankar, A., Wu, Y., Gou, L., Zhang, W., Yang, H.: Dynamic graph representation learning via self-attention networks. In: Workshop on Representation Learning on Graphs and Manifolds in ICLR (2019)

    Google Scholar 

  28. Shi, C., Hu, B., Zhao, W.X., Yu, P.S.: Heterogeneous information network embedding for recommendation. IEEE TKDE 31(2), 357–370 (2019)

    Google Scholar 

  29. Singer, U., Guy, I., Radinsky, K.: Node embedding over temporal graphs. In: IJCAI, pp. 4605–4612 (2019)

    Google Scholar 

  30. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: WWW, pp. 1067–1077 (2015)

    Google Scholar 

  31. Trivedi, R., Farajtabar, M., Biswal, P., Zha, H.: DyRep: learning representations over dynamic graphs. In: ICLR (2019)

    Google Scholar 

  32. Tu, C., Liu, H., Liu, Z., Sun, M.: CANE: context-aware network embedding for relation modeling. In: ACL, pp. 1722–1731, July 2017

    Google Scholar 

  33. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. ICLR (2018)

    Google Scholar 

  34. Wang, X., et al.: Heterogeneous graph attention network. In: WWW, pp. 2022–2032 (2019)

    Google Scholar 

  35. Wen, Y., Guo, L., Chen, Z., Ma, J.: Network embedding based recommendation method in social networks. In: WWW, pp. 11–12 (2018)

    Google Scholar 

  36. Xu, D., Cheng, W., Luo, D., Liu, X., Zhang, X.: Spatio-temporal attentive RNN for node classification in temporal attributed graphs. In: IJCAI (2019)

    Google Scholar 

  37. Xue, H., Peng, J., Li, J., Shang, X.: Integrating multi-network topology via deep semi-supervised node embedding. In: CIKM, pp. 2117–2120 (2019)

    Google Scholar 

  38. Yang, L., Xiao, Z., Jiang, W., Wei, Y., Hu, Y., Wang, H.: Dynamic heterogeneous graph embedding using hierarchical attentions. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12036, pp. 425–432. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45442-5_53

    Chapter  Google Scholar 

  39. Yin, Y., Ji, L., Zhang, J., Pei, Y.: DHNE: network representation learning method for dynamic heterogeneous networks. IEEE Access 7, 134782–134792 (2019)

    Article  Google Scholar 

  40. Zhang, C., Song, D., Huang, C., Swami, A., Chawla, N.V.: Heterogeneous graph neural network. In: SIGKDD, pp. 793–803 (2019)

    Google Scholar 

  41. Zhang, H., Qiu, L., Yi, L., Song, Y.: Scalable multiplex network embedding. In: IJCAI, pp. 3082–3088 (2018)

    Google Scholar 

  42. Zhang, Z., Cui, P., Pei, J., Wang, X., Zhu, W.: Timers: error-bounded SVD restart on dynamic networks. In: AAAI (2018)

    Google Scholar 

  43. Zhou, L.k., Yang, Y., Ren, X., Wu, F., Zhuang, Y.: Dynamic network embedding by modeling triadic closure process. In: AAAI (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xue, H., Yang, L., Jiang, W., Wei, Y., Hu, Y., Lin, Y. (2021). Modeling Dynamic Heterogeneous Network for Link Prediction Using Hierarchical Attention with Temporal RNN. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12457. Springer, Cham. https://doi.org/10.1007/978-3-030-67658-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67658-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67657-5

  • Online ISBN: 978-3-030-67658-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics