Skip to main content

Collagens in the Physiopathology of the Ehlers–Danlos Syndromes

  • Chapter
  • First Online:
The Collagen Superfamily and Collagenopathies

Part of the book series: Biology of Extracellular Matrix ((BEM,volume 8))

Abstract

The Ehlers–Danlos Syndromes (EDS) comprise a clinically and genetically heterogeneous group of complex hereditary disorders of connective tissue, with common features including joint hypermobility, soft and hyperextensible skin, abnormal wound healing, easy bruising, and signs of generalized connective tissue friability. Initial ultrastructural studies suggested that the abnormalities underlying EDS affected the collagen “wickerwork” of the connective tissue, and early biochemical and genetic studies identified defects in fibrillar types I, III, and V collagen, and in enzymes involved in their posttranslational modification, lysyl hydroxylase 1 and the procollagen amino-proteinase ADAMTS2. More recent discoveries have implicated a range of other, diverse extracellular matrix (ECM) molecules in the physiopathology of EDS, including the glycoprotein tenascin X, the FACIT type XII collagen, the intracellular chaperone and peptidylprolyl isomerase FKBP22, enzymes involved in glycosaminoglycan biosynthesis (D4ST1, DS-epi1, galactosyltransferase I and II), an intracellular zinc transporter ZIP13, (putative) transcription factors ZNF469 and PRDM5, factors involved in the classical complement pathway (C1r and C1s), and most recently, the ECM molecule AEBP1 that is involved in collagen polymerization. In this chapter, we give an overview of the different types of EDS and describe how the identification of their molecular underpinnings, and the study of pathophysiologic consequences of these defects in humans and in cellular and mouse models have provided key insights into the complex pathways of collagen fibrillogenesis and supramolecular organization of the collagen fibrils in the ECM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AEBP1:

Adipocyte enhancer-binding protein 1

ATCS:

Adducted thumb–clubfoot syndrome

aEDS:

Arthrochalasia type

BCS:

Brittle cornea syndrome

C4ST:

Chondroitin 4-O-sulfotransferase

C:

Carboxy

CAH:

Congenital adrenal hypoplasia

cEDS:

Classical EDS

clEDS:

Classical-like EDS

CS:

Chondroitin sulfate

cvEDS:

Cardiac-valvular EDS

D4ST1:

Dermatan 4-O-sulfotransferase-1

dEDS:

Dermatosparaxis type

DS:

Dermatan sulfate

DS-epi:

Dermatan sulfate epimerase

EDS:

Ehlers–Danlos syndromes

ECM:

Extracellular matrix

ER:

Endoplasmic reticulum

FACIT:

Fibril-associated collagens with interrupted triple helices

GAG:

Glycosaminoglycan

GalNAc:

N-acetylgalactosamine

GalT:

Galactosyltransferase

GlcA:

Glucuronic acid

hEDS:

Hypermobile Ehlers–Danlos syndrome

HPs:

Hydroxylysylpyridinolines

HS:

Heparan sulfate

IdoA:

Iduronic acid

kEDS:

Kyphoscoliotic EDS

LH:

Lysyl hydroxylase

LPs:

Lysylpyridinolines

mcEDS:

Musculocontractural EDS

mEDS:

Myopathic EDS

N:

Amino

NMD:

Nonsense-mediated mRNA decay

OI:

Osteogenesis imperfecta

pEDS:

Periodontal EDS

PPIase:

Peptidylprolyl isomerase

rER:

Rough endoplasmic reticulum

RNAi:

RNA interference

SEMD:

Spondyloepimetaphyseal dysplasia

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SLRP:

Small leucine-rich proteoglycan

spEDS:

Spondylodysplastic EDS

TNX:

Tenascin X

TSP1:

Thrombospondin type I repeats

TSPN:

Thrombospondin N-terminal domain

vEDS:

Vascular EDS

XylTs:

Xylosyltransferases

ZIP13:

Zrt/irt-like protein 13

References

  • Abu AFM, Marek D, Pras E, Nir U, Reznik-Wolf H, Pras E (2008) Deleterious mutations in the zinc-finger 469 gene cause brittle cornea syndrome. Am J Hum Genet 82:1217–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adachi E, Hayashi T (1986) In vitro formation of hybrid fibrils of type V collagen and type I collagen. Limited growth of type I collagen into thick fibrils by type V collagen. Connect Tissue Res 14:257–266

    Article  CAS  PubMed  Google Scholar 

  • Adham S, Dupuis-Girod S, Charpentier E, Mazzella JM, Jeunemaitre X, Legrand A (2019) Classical Ehlers-Danlos syndrome with a propensity to arterial events: a new report on a French family with a COL1A1 p.(Arg312Cys) variant. Clin Genet 97:357.

    Article  PubMed  CAS  Google Scholar 

  • Almeida R, Levery SB, Mandel U, Kresse H, Schwientek T, Bennett EP, Clausen H (1999) Cloning and expression of a proteoglycan UDP-galactose:beta-xylose beta1,4-galactosyltransferase I. A seventh member of the human beta4-galactosyltransferase gene family. J Biol Chem 274:26165–26171.

    Article  CAS  PubMed  Google Scholar 

  • Andrikopoulos K, Liu X, Keene DR, Jaenisch R, Ramirez F (1995) Targeted mutation in the col5a2 gene reveals a regulatory role for type V collagen during matrix assembly. Nat Genet 9:31–36.

    Article  CAS  PubMed  Google Scholar 

  • Arlaud GJ, Colomb MG, Gagnon J (1987) A functional model of the human C1 complex emergence of a functional model. Immunol Today 8:106–111.

    Article  CAS  PubMed  Google Scholar 

  • Arlaud GJ, Rossi V, Thielens NM, Gaboriaud C, Bersch B, Hernandez JF (1998) Structural and functional studies on C1r and C1s: new insights into the mechanisms involved in C1 activity and assembly. Immunobiology 199:303–316.

    Article  CAS  PubMed  Google Scholar 

  • Arlaud GJ, Gaboriaud C, Thielens NM, Rossi V, Bersch B, Hernandez JF, Fontecilla-Camps JC (2001) Structural biology of C1: dissection of a complex molecular machinery. Immunol Rev 180:136–145.

    Article  CAS  PubMed  Google Scholar 

  • Bai X, Zhou D, Brown JR, Crawford BE, Hennet T, Esko JD (2001) Biosynthesis of the linkage region of glycosaminoglycans: cloning and activity of galactosyltransferase II, the sixth member of the beta 1,3-galactosyltransferase family (beta 3GalT6). J Biol Chem 276:48189–48195.

    Article  CAS  PubMed  Google Scholar 

  • Bally I, Rossi V, Lunardi T, Thielens NM, Gaboriaud C, Arlaud GJ (2009) Identification of the C1q-binding sites of human C1r and C1s: a refined three-dimensional model of the C1 complex of complement. J Biol Chem 284:19340–19348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barabas AP (1967) Heterogeneity of the Ehlers-Danlos syndrome: description of three clinical types and a hypothesis to explain the basic defect(s). Br Med J 2:612–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann M et al (2012) Mutations in FKBP14 cause a variant of Ehlers-Danlos syndrome with progressive kyphoscoliosis, myopathy, and hearing loss. Am J Hum Genet 90:201–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beighton P (1970) Ehlers-Danlos syndrome. Ann Rheum Dis 29:332–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beighton P et al (1988) International nosology of heritable disorders of connective tissue, Berlin, 1986. Am J Med Genet 29:581–594.

    Article  CAS  PubMed  Google Scholar 

  • Beighton P, De Paepe A, Steinmann B, Tsipouras P, Wenstrup RJ (1998) Ehlers-Danlos syndromes: revised nosology, Villefranche, 1997. Ehlers-Danlos National Foundation (USA) and Ehlers-Danlos Support Group (UK). Am J Med Genet 77:31–37

    Article  CAS  PubMed  Google Scholar 

  • Bekhouche M, Colige A (2015) The procollagen N-proteinases ADAMTS2, 3 and 14 in pathophysiology. Matrix Biol 44–46:46–53.

    Article  PubMed  CAS  Google Scholar 

  • Bekhouche M et al (2016) Determination of the substrate repertoire of ADAMTS2, 3, and 14 significantly broadens their functions and identifies extracellular matrix organization and TGF-beta signaling as primary targets. FASEB J 30:1741–1756.

    Article  CAS  PubMed  Google Scholar 

  • Birk DE (2001) Type V collagen: heterotypic type I/V collagen interactions in the regulation of fibril assembly. Micron (Oxford, England : 1993) 32:223–237.

    Article  CAS  Google Scholar 

  • Birk DE, Fitch JM, Babiarz JP, Linsenmayer TF (1988) Collagen type I and type V are present in the same fibril in the avian corneal stroma. J Cell Biol 106:999–1008.

    Article  CAS  PubMed  Google Scholar 

  • Birk DE, Fitch JM, Babiarz JP, Doane KJ, Linsenmayer TF (1990) Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter. J Cell Sci 95(Pt 4):649–657

    Article  CAS  PubMed  Google Scholar 

  • Blackburn PR et al (2018) Bi-allelic alterations in AEBP1 Lead to defective collagen assembly and connective tissue structure resulting in a variant of Ehlers-Danlos syndrome. Am J Hum Genet 102:696–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bork P, Beckmann G (1993) The CUB domain. A widespread module in developmentally regulated proteins. J Mol Biol 231:539–545.

    Article  CAS  PubMed  Google Scholar 

  • Boudko SP, Ishikawa Y, Nix J, Chapman MS, Bachinger HP (2014) Structure of human peptidyl-prolyl cis-trans isomerase FKBP22 containing two EF-hand motifs. Protein Sci 23:67–75.

    Article  CAS  PubMed  Google Scholar 

  • Bowen JM, Sobey GJ, Burrows NP, Colombi M, Lavallee ME, Malfait F, Francomano CA (2017) Ehlers-Danlos syndrome, classical type. Am J Med Genet C Semin Med Genet 175:27–39.

    Article  PubMed  Google Scholar 

  • Bowen CJ et al (2020) Targetable cellular signaling events mediate vascular pathology in vascular Ehlers-Danlos syndrome. J Clin Invest 130:686–698.

    Article  CAS  PubMed  Google Scholar 

  • Brady AF et al (2017a) The Ehlers-Danlos syndromes, rare types. Am J Med Genet Part C Semin Med Genet 175:70–115.

    Article  PubMed  Google Scholar 

  • Brady AF et al (2017b) The Ehlers-Danlos syndromes, rare types. Am J Med Genet C 175:70–115.

    Article  Google Scholar 

  • Bristow J, Carey W, Egging D, Schalkwijk J (2005) Tenascin-X, collagen, elastin, and the Ehlers-Danlos syndrome. Am J Med Genet C Semin Med Genet 139C:24–30.

    Article  CAS  PubMed  Google Scholar 

  • Broek DL, Madri J, Eikenberry EF, Brodsky B (1985) Characterization of the tissue form of type V collagen from chick bone. J Biol Chem 260:555–562

    Article  CAS  PubMed  Google Scholar 

  • Burch GHGY, Liu W, Dettman RW, Curry CJ, Smith L, Miller WL, Bristow J (1997) Tenascin-X deficiency is associated with Ehlers-Danlos syndrome. Nat Genet 17:104–108

    Article  CAS  PubMed  Google Scholar 

  • Burkitt Wright EM et al (2011) Mutations in PRDM5 in brittle cornea syndrome identify a pathway regulating extracellular matrix development and maintenance. Am J Hum Genet 88:767–777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkitt Wright EMPL, Spencer HL, Clayton-Smith J, Au L, Munier FL, Smithson S, Suri M, Rohrbach M, Manson FD, Black GC (2013) Brittle cornea syndrome: recognition, molecular diagnosis and management. Orphanet J Rare Dis 8:6

    Article  Google Scholar 

  • Burrows NP, Nicholls AC, Richards AJ, Luccarini C, Harrison JB, Yates JR, Pope FM (1998) A point mutation in an intronic branch site results in aberrant splicing of COL5A1 and in Ehlers-Danlos syndrome type II in two British families. Am J Hum Genet 63:390–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byers PH, Murray ML (2014) Ehlers-Danlos syndrome: a showcase of conditions that lead to understanding matrix biology. Matrix Biol 33:10–15.

    Article  CAS  PubMed  Google Scholar 

  • Byers PH, Holbrook KA, Barsh GS, Smith LT, Bornstein P (1981) Altered secretion of type III procollagen in a form of type IV Ehlers-Danlos syndrome. Biochemical studies in cultured fibroblasts. Lab Investig 44:336–341

    CAS  PubMed  Google Scholar 

  • Byers PH et al (1997) Ehlers-Danlos syndrome type VIIA and VIIB result from splice-junction mutations or genomic deletions that involve exon 6 in the COL1A1 and COL1A2 genes of type I collagen. Am J Med Genet 72:94–105.

    Article  CAS  PubMed  Google Scholar 

  • Byers PH et al (2017) Diagnosis, natural history, and management in vascular Ehlers-Danlos syndrome. Am J Med Genet Part C Semin Med Genet 175:40–47.

    Article  PubMed  Google Scholar 

  • Cabral WA et al (2005) Mutations near amino end of alpha1(I) collagen cause combined osteogenesis imperfecta/Ehlers-Danlos syndrome by interference with N-propeptide processing. J Biol Chem 280:19259–19269.

    Article  CAS  PubMed  Google Scholar 

  • Cabral WA et al (2007) Y-position cysteine substitution in type I collagen (alpha1(I) R888C/p.R1066C) is associated with osteogenesis imperfecta/Ehlers-Danlos syndrome phenotype. Hum Mutat 28:396–405.

    Article  CAS  PubMed  Google Scholar 

  • Cameron (1993) Corneal abnormalities in Ehlers-Danlos syndrome type VI. Cornea 12:54–59.

    Article  CAS  PubMed  Google Scholar 

  • Canty EG, Kadler KE (2005) Procollagen trafficking, processing and fibrillogenesis. J Cell Sci 118:1341–1353.

    Article  CAS  PubMed  Google Scholar 

  • Cassidy K, Eikenberry EF, Olsen B, Brodsky B (1980) X-ray diffraction investigations of collagen fibril structure in dermatosparactic lamb tissues. Lab Investig 43:542–546

    CAS  PubMed  Google Scholar 

  • Chakravarti S, Magnuson T, Lass JH, Jepsen KJ, LaMantia C, Carroll H (1998) Lumican regulates collagen fibril assembly: skin fragility and corneal opacity in the absence of lumican. J Cell Biol 141:1277–1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanut-Delalande H, Fichard A, Bernocco S, Garrone R, Hulmes DJ, Ruggiero F (2001) Control of heterotypic fibril formation by collagen V is determined by chain stoichiometry. J Biol Chem 276:24352–24359.

    Article  CAS  PubMed  Google Scholar 

  • Chanut-Delalande H, Bonod-Bidaud C, Cogne S, Malbouyres M, Ramirez F, Fichard A, Ruggiero F (2004) Development of a functional skin matrix requires deposition of collagen V heterotrimers. Mol Cell Biol 24:6049–6057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chernogubow AN (1892) Uber einen Fall von Cutis Laxa Jahresber. Ges Med 27:562

    Google Scholar 

  • Chiarelli N, Carini G, Zoppi N, Ritelli M, Colombi M (2018) Transcriptome analysis of skin fibroblasts with dominant negative COL3A1 mutations provides molecular insights into the etiopathology of vascular Ehlers-Danlos syndrome. PLoS One 13:e0191220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiarelli N, Carini G, Zoppi N, Ritelli M, Colombi M (2019) Molecular insights in the pathogenesis of classical Ehlers-Danlos syndrome from transcriptome-wide expression profiling of patients’ skin fibroblasts. PLoS One 14:e0211647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiodo AA, Hockey A, Cole WG (1992) A base substitution at the splice acceptor site of intron 5 of the COL1A2 gene activates a cryptic splice site within exon 6 and generates abnormal type I procollagen in a patient with Ehlers-Danlos syndrome type VII. J Biol Chem 267:6361–6369

    Article  CAS  PubMed  Google Scholar 

  • Chiquet M, Birk DE, Bonnemann CG, Koch M (2014) Collagen XII: protecting bone and muscle integrity by organizing collagen fibrils. Int J Biochem Cell Biol 53:51–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu ML et al (1984) Human pro alpha 1(I) collagen gene structure reveals evolutionary conservation of a pattern of introns and exons. Nature 310:337–340.

    Article  CAS  PubMed  Google Scholar 

  • Colige A VI, Thiry M, Lambert CA, Van Beeumen J, Li SW, Prockop DJ, Lapiere CM, Nusgens BV (2002) Cloning and characterization of ADAMTS-14, a novel ADAMTS displaying high homology with ADAMTS-2 and ADAMTS-3. J Biol Chem 277:5756–5766

    Article  CAS  PubMed  Google Scholar 

  • Colige A, Li SW, Sieron AL, Nusgens BV, Prockop DJ, Lapiere CM (1997) cDNA cloning and expression of bovine procollagen I N-proteinase: a new member of the superfamily of zinc-metalloproteinases with binding sites for cells and other matrix components. Proc Natl Acad Sci USA 94:2374–2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colige ASA, Li SW, Schwarze U, Petty E, Wertelecki W, Wilcox W, Krakow D, Cohn DH, Reardon W, Byers PH, Lapière CM, Prockop DJ, Nusgens BV (1999) Human Ehlers-Danlos syndrome type VII C and bovine dermatosparaxis are caused by mutations in the procollagen I N-proteinase gene. Am J Hum Genet 65:308–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colige A et al (2004) Novel types of mutation responsible for the dermatosparactic type of Ehlers-Danlos syndrome (type VIIC) and common polymorphisms in the ADAMTS2 gene. J Invest Dermatol 123:656–663.

    Article  CAS  PubMed  Google Scholar 

  • Colombi M, Dordoni C, Venturini M, Zanca A, Calzavara-Pinton P, Ritelli M (2017) Delineation of Ehlers-Danlos syndrome phenotype due to the c.934C>T, p.(Arg312Cys) mutation in COL1A1: report on a three-generation family without cardiovascular events, and literature review. Am J Med Genet A 173:524–530.

    Article  CAS  PubMed  Google Scholar 

  • Cooper NR (1985) The classical complement pathway: activation and regulation of the first complement component. Adv Immunol 37:151–216.

    Article  CAS  PubMed  Google Scholar 

  • Cooper LJ et al (2006) The role of dermatopontin in the stromal organization of the cornea. Invest Ophthalmol Vis Sci 47:3303–3310.

    Article  PubMed  Google Scholar 

  • Cooper TK et al (2010) The haploinsufficient Col3a1 mouse as a model for vascular Ehlers-Danlos syndrome. Vet Pathol 47:1028–1039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Counts DF, Byers PH, Holbrook KA, Hegreberg GA (1980) Dermatosparaxis in a Himalayan cat: I. biochemical studies of dermal collagen. J Invest Dermatol 74:96–99

    Article  CAS  PubMed  Google Scholar 

  • Crowther MA, Lach B, Dunmore PJ, Roach MR (1991) Vascular collagen fibril morphology in type IV Ehlers-Danlos syndrome. Connect Tissue Res 25:209–217.

    Article  CAS  PubMed  Google Scholar 

  • Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV (1997) Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol 136:729–743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danlos M (1908) Un cas de cutis laxa avec tumeurs par contusion chronique des coudes et des genoux (xanthome juvénile pseudo-diabétique de MM. Hallopeau et Macé de Lépinay). Bull Soc Fr Dermatol Syphiligr 19:70–72

    Google Scholar 

  • De Paepe A, Malfait F (2012) The Ehlers-Danlos syndrome, a disorder with many faces. Clin Genet 82:1–11.

    Article  PubMed  CAS  Google Scholar 

  • De Paepe A, Nuytinck L, Hausser I, Anton-Lamprecht I, Naeyaert JM (1997) Mutations in the COL5A1 gene are causal in the Ehlers-Danlos syndromes I and II. Am J Hum Genet 60:547–554

    PubMed  PubMed Central  Google Scholar 

  • de Wet W, Bernard M, Benson-Chanda V, Chu ML, Dickson L, Weil D, Ramirez F (1987) Organization of the human pro-alpha 2(I) collagen gene. J Biol Chem 262:16032–16036

    Article  PubMed  Google Scholar 

  • Deak SB, Nicholls A, Pope FM, Prockop DJ (1983) The molecular defect in a nonlethal variant of osteogenesis imperfecta. Synthesis of pro-alpha 2(I) chains which are not incorporated into trimers of type I procollagen. J Biol Chem 258:15192–15197

    Article  CAS  PubMed  Google Scholar 

  • Delbaere S et al (2020) Novel defects in collagen XII and VI expand the mixed myopathy/Ehlers-Danlos syndrome spectrum and lead to variant-specific alterations in the extracellular matrix Genet Med 22:112–123

    Google Scholar 

  • Demirdas SDE, Robert L, Kempers M, van Beek D, Micha D, van Engelen BG, Hamel B, Schalkwijk J, Loeys B, Maugeri A, Voermans NC (2016) Recognizing the tenascin-X deficient type of Ehlers-Danlos syndrome: a cross-sectional study in 17 patients. Clin Genet 91:411.

    Article  PubMed  CAS  Google Scholar 

  • D’hondt S et al (2018) Type III collagen affects dermal and vascular collagen fibrillogenesis and tissue integrity in a mutant Col3a1 transgenic mouse model. Matrix Biol 70:72–83.

    Article  PubMed  CAS  Google Scholar 

  • Dordoni C, Ciaccio C, Venturini M, Calzavara-Pinton P, Ritelli M, Colombi M (2016) Further delineation of FKBP14-related Ehlers-Danlos syndrome: a patient with early vascular complications and non-progressive kyphoscoliosis, and literature review. Am J Med Genet A 170:2031–2038.

    Article  CAS  PubMed  Google Scholar 

  • Dubacher N et al (2020) Celiprolol but not losartan improves the biomechanical integrity of the aorta in a mouse model of vascular Ehlers-Danlos syndrome. Cardiovasc Res 116:457–465.

    CAS  PubMed  Google Scholar 

  • Dundar M et al (2009) Loss of dermatan-4-sulfotransferase 1 function results in adducted thumb-clubfoot syndrome. Am J Hum Genet 85:873–882.

    Google Scholar 

  • Duong J et al (2019) A family with classical Ehlers-Danlos syndrome (cEDS), mild bone fragility and without vascular complications, Caused by the p.Arg312Cys mutation in COL1A1. Eur J Med Genet 103730.

    Google Scholar 

  • Dusanic M et al (2018) Novel nonsense mutation in SLC39A13 initially presenting as myopathy: case report and review of the literature. Mol Syndromol 9:100–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egging D, van den Berkmortel F, Taylor G, Bristow J, Schalkwijk J (2007) Interactions of human tenascin-X domains with dermal extracellular matrix molecules. Arch Dermatol Res 298:389–396.

    Article  CAS  PubMed  Google Scholar 

  • Ehlers E (1901) Cutis laxa, neigung zu haemorrhagien in der haut, lockerung meherer artikulationen. Dermatol Z 8:173–174

    Google Scholar 

  • Elefteriou F, Exposito JY, Garrone R, Lethias C (2001) Binding of tenascin-X to decorin. FEBS Lett 495:44–47.

    Article  CAS  PubMed  Google Scholar 

  • Fernandes RJ, Hirohata S, Engle JM, Colige A, Cohn DH, Eyre DR, Apte SS (2001) Procollagen II amino propeptide processing by ADAMTS-3. Insights on dermatosparaxis. J Biol Chem 276:31502–31509.

    Article  CAS  PubMed  Google Scholar 

  • Fichard A, Kleman JP, Ruggiero F (1995) Another look at collagen V and XI molecules. Matrix Biol 14:515–531.

    Article  CAS  PubMed  Google Scholar 

  • Fichard A, Tillet E, Delacoux F, Garrone R, Ruggiero F (1997) Human recombinant alpha1(V) collagen chain. Homotrimeric assembly and subsequent processing. J Biol Chem 272:30083–30087.

    Article  CAS  PubMed  Google Scholar 

  • Fjolstad M, Helle O (1974) A hereditary dysplasia of collagen tissues in sheep. J Pathol 112:183–188.

    Article  CAS  PubMed  Google Scholar 

  • Font B, Eichenberger D, Rosenberg LM, van der Rest M (1996) Characterization of the interactions of type XII collagen with two small proteoglycans from fetal bovine tendon, decorin and fibromodulin. Matrix Biol 15:341–348

    Article  CAS  PubMed  Google Scholar 

  • Fontaine E, Faugeroux J, Beugnon C, Verpont M-C, Nematalla H, Bruneval P, Hadchouel J, Jeunemaitre X (2015) Caractérisation d’un modèle murin du Syndrome d’Ehlers-Danlos vasculaire. J Mal Vasc 40:119

    Article  Google Scholar 

  • Frank M et al (2015) The type of variants at the COL3A1 gene associates with the phenotype and severity of vascular Ehlers-Danlos syndrome. Eur J Hum Genet 23:1657–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukada T et al (2008) The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways. PLoS One 3:e3642.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaines R, Tinkle BT, Halandras PM, Al-Nouri O, Crisostomo P, Cho JS (2015) Spontaneous ruptured dissection of the right common iliac artery in a patient with classic Ehlers-Danlos syndrome phenotype. Ann Vasc Surg 29:595.e511–595.e594.

    Article  Google Scholar 

  • Galli GG et al (2012) Prdm5 regulates collagen gene transcription by association with RNA polymerase II in developing bone. PLoS Genet 8:e1002711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gensure RC et al (2005) A novel COL1A1 mutation in infantile cortical hyperostosis (Caffey disease) expands the spectrum of collagen-related disorders. J Clin Invest 115:1250–1257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghali N et al (2019) Atypical COL3A1 variants (glutamic acid to lysine) cause vascular Ehlers-Danlos syndrome with a consistent phenotype of tissue fragility and skin hyperextensibility. Genet Med 21:2081–2091.

    Article  CAS  PubMed  Google Scholar 

  • Giunta C, Steinmann B (2000) Compound heterozygosity for a disease-causing G1489E [corrected] and disease-modifying G530S substitution in COL5A1 of a patient with the classical type of Ehlers-Danlos syndrome: an explanation of intrafamilial variability? Am J Med Genet 90:72–79.

    Article  CAS  PubMed  Google Scholar 

  • Giunta C, Nuytinck L, Raghunath M, Hausser I, De Paepe A, Steinmann B (2002) Homozygous Gly530Ser substitution in COL5A1 causes mild classical Ehlers-Danlos syndrome. Am J Med Genet 109:284–290.

    Article  CAS  PubMed  Google Scholar 

  • Giunta C et al (2008) Spondylocheiro dysplastic form of the Ehlers-Danlos syndrome--an autosomal-recessive entity caused by mutations in the zinc transporter gene SLC39A13. Am J Hum Genet 82:1290–1305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giunta C et al (2018) A cohort of 17 patients with kyphoscoliotic Ehlers-Danlos syndrome caused by biallelic mutations in FKBP14: expansion of the clinical and mutational spectrum and description of the natural history. Genet Med 20:42–54.

    Article  CAS  PubMed  Google Scholar 

  • Gjaltema RA, van der Stoel MM, Boersema M, Bank RA (2016) Disentangling mechanisms involved in collagen pyridinoline cross-linking: the immunophilin FKBP65 is critical for dimerization of lysyl hydroxylase 2. Proc Natl Acad Sci USA 113:7142–7147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gotte M, Spillmann D, Yip GW, Versteeg E, Echtermeyer FG, van Kuppevelt TH, Kiesel L (2008) Changes in heparan sulfate are associated with delayed wound repair, altered cell migration, adhesion and contractility in the galactosyltransferase I (beta4GalT-7) deficient form of Ehlers-Danlos syndrome. Hum Mol Genet 17:996–1009.

    Article  PubMed  CAS  Google Scholar 

  • Gotting C, Kuhn J, Zahn R, Brinkmann T, Kleesiek K (2000) Molecular cloning and expression of human UDP-d-xylose:proteoglycan core protein beta-d-xylosyltransferase and its first isoform XT-II. J Mol Biol 304:517–528.

    Article  CAS  PubMed  Google Scholar 

  • Grobner R et al (2019) C1R mutations trigger constitutive complement 1 activation in periodontal Ehlers-Danlos syndrome. Front Immunol 10:2537.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanset RAM (1967) Dermatosparaxis (peau dechirée) chez le veau: un defaut général du tissu conjonctif, de nature héréditaire. Ann Méd Vétérinaire 7:451–470

    Google Scholar 

  • Hanset RLC (1974) Inheritance of dermatosparaxis in the calf. A genetic defect of connective tissues. J Hered 65:356–358

    Article  CAS  PubMed  Google Scholar 

  • Haralson MA, Mitchell WM, Rhodes RK, Kresina TF, Gay R, Miller EJ (1980) Chinese hamster lung cells synthesize and confine to the cellular domain a collagen composed solely of B chains. Proc Natl Acad Sci USA 77:5206–5210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haralson MA, Mitchell WM, Rhodes RK, Miller EJ (1984) Evidence that the collagen in the culture medium of Chinese hamster lung cells contains components related at the primary structural level to the alpha1(V) collagen chain. Arch Biochem Biophys 229:509–518.

    Article  CAS  PubMed  Google Scholar 

  • Hata R, Kurata S, Shinkai H (1988) Existence of malfunctioning pro alpha2(I) collagen genes in a patient with a pro alpha 2(I)-chain-defective variant of Ehlers-Danlos syndrome. Eur J Biochem 174:231–237

    Article  CAS  PubMed  Google Scholar 

  • Hausser I, Anton-Lamprecht I (1994) Differential ultrastructural aberrations of collagen fibrils in Ehlers-Danlos syndrome types I-IV as a means of diagnostics and classification. Hum Genet 93:394–407.

    Article  CAS  PubMed  Google Scholar 

  • Hautala T, Byers MG, Eddy RL, Shows TB, Kivirikko KI, Myllyla R (1992) Cloning of human lysyl hydroxylase: complete cDNA-derived amino acid sequence and assignment of the gene (PLOD) to chromosome 1p36.3–p36.2. Genomics 13:62–69.

    Article  CAS  PubMed  Google Scholar 

  • Hautala T, Heikkinen J, Kivirikko KI, Myllyla R (1993) A large duplication in the gene for lysyl hydroxylase accounts for the type VI variant of Ehlers-Danlos syndrome in two siblings. Genomics 15:399–404.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez A, Aguirre-Negrete MG, Ramirez-Soltero S, Gonzalez-Mendoza A, Martinez y Martinez R, Velazquez-Cabrera A, Cantu JM (1979) A distinct variant of the Ehlers-Danlos syndrome. Clin Genet 16:335–339

    Article  CAS  PubMed  Google Scholar 

  • Hernandez A, Aguirre-Negrete MG, Liparoli JC, Cantu JM (1981) Third case of a distinct variant of the Ehlers-Danlos syndrome (EDS). Clin Genet 20:222–224

    Article  CAS  PubMed  Google Scholar 

  • Hernandez A et al (1986) Ehlers-Danlos features with progeroid facies and mild mental retardation. Further delineation of the syndrome. Clin Genet 30:456–461

    Article  CAS  PubMed  Google Scholar 

  • Hicks D et al (2014) Mutations in the collagen XII gene define a new form of extracellular matrix-related myopathy. Hum Mol Genet 23:2353–2363.

    Article  CAS  PubMed  Google Scholar 

  • Hirose T, Suzuki I, Takahashi N, Fukada T, Tangkawattana P, Takehana K (2018) Morphometric analysis of cornea in the Slc39a13/Zip13-knockout mice. J Vet Med Sci 80:814–818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirose T et al (2019) Structural alteration of glycosaminoglycan side chains and spatial disorganization of collagen networks in the skin of patients with mcEDS-CHST14. Biochim Biophys Gen Subj 1863:623–631.

    Article  CAS  Google Scholar 

  • Holbrook KA, Byers PH (1981) Ultrastructural characteristics of the skin in a form of the Ehlers-Danlos syndrome type IV. Storage in the rough endoplasmic reticulum. Lab Investig 44:342–350

    CAS  PubMed  Google Scholar 

  • Holbrook KA, Byers PH (1982) Structural abnormalities in the dermal collagen and elastic matrix from the skin of patients with inherited connective tissue disorders. J Invest Dermatol 79(Suppl 1):7s–16s

    Article  PubMed  Google Scholar 

  • Holbrook KA, Byers PH, Counts DF, Hegreberg GA (1980) Dermatosparaxis in a Himalayan cat: II. Ultrastructural studies of dermal collagen. J Invest Dermatol 74:100–104

    Article  CAS  PubMed  Google Scholar 

  • Horn D et al (2017) Biallelic COL3A1 mutations result in a clinical spectrum of specific structural brain anomalies and connective tissue abnormalities. Am J Med Genet A 173:2534–2538.

    Article  CAS  PubMed  Google Scholar 

  • Hyland J, Ala-Kokko L, Royce P, Steinmann B, Kivirikko KI, Myllyla R (1992) A homozygous stop codon in the lysyl hydroxylase gene in two siblings with Ehlers-Danlos syndrome type VI. Nat Genet 2:228–231.

    Article  CAS  PubMed  Google Scholar 

  • Ihme A et al (1984) Ehlers-Danlos syndrome type VI: collagen type specificity of defective lysyl hydroxylation in various tissues. J Invest Dermatol 83:161–165.

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa Y, Bachinger HP (2014) A substrate preference for the rough endoplasmic reticulum resident protein FKBP22 during collagen biosynthesis. J Biol Chem 289:18189–18201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa Y, Mizuno K, Bachinger HP (2017) Ziploc-ing the structure 2.0: endoplasmic reticulum-resident peptidyl prolyl isomerases show different activities toward hydroxyproline. J Biol Chem 292:9273–9282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa Y et al (2020) The novel missense mutation Met48Lys in FKBP22 changes its structure and functions. Sci Rep 10:497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ith B, Wei J, Yet SF, Perrella MA, Layne MD (2005) Aortic carboxypeptidase-like protein is expressed in collagen-rich tissues during mouse embryonic development. Gene Expression Patt 5:533–537.

    Article  CAS  Google Scholar 

  • Jackson DS, Bentley JP (1968) Collagen-glycosaminoglycan interactions. In: Gould BS (ed) Treatise on collagen, vol 2., Part 1. Academic, New York, pp 189–214

    Google Scholar 

  • Janecke AR et al (2016) The phenotype of the musculocontractural type of Ehlers-Danlos syndrome due to CHST14 mutations. Am J Med Genet A 170A:103–115.

    Article  PubMed  CAS  Google Scholar 

  • Jansen LH (1955) The structure of the connective tissue, an explanation of the symptoms of the Ehlers-Danlos syndrome. Dermatologica 110:108–120.

    Article  CAS  PubMed  Google Scholar 

  • Jeong J et al (2012) Promotion of vesicular zinc efflux by ZIP13 and its implications for spondylocheiro dysplastic Ehlers-Danlos syndrome. Proc Natl Acad Sci USA 109:E3530–E3538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorgensen A et al (2015) Vascular Ehlers-Danlos syndrome in siblings with biallelic COL3A1 sequence variants and marked clinical variability in the extended family. Eur J Hum Genet 23:796–802.

    Article  PubMed  CAS  Google Scholar 

  • Kadler KE, Holmes DF, Trotter JA, Chapman JA (1996) Collagen fibril formation. Biochem J 316(Pt 1):1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadler KE, Baldock C, Bella J, Boot-Handford RP (2007) Collagens at a glance. J Cell Sci 120:1955–1958.

    Article  CAS  PubMed  Google Scholar 

  • Kadler KE, Hill A, Canty-Laird EG (2008) Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol 20:495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagan HM, Li W (2003) Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem 88:660–672.

    Article  CAS  PubMed  Google Scholar 

  • Kapferer-Seebacher I et al (2016) Periodontal Ehlers-Danlos syndrome is caused by mutations in C1R and C1S, which encode subcomponents C1r and C1s of complement. Am J Hum Genet 99:1005–1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keene DR, Sakai LY, Bachinger HP, Burgeson RE (1987) Type III collagen can be present on banded collagen fibrils regardless of fibril diameter. J Cell Biol 105:2393–2402.

    Article  CAS  PubMed  Google Scholar 

  • Keene DR, Lunstrum GP, Morris NP, Stoddard DW, Burgeson RE (1991) Two type XII-like collagens localize to the surface of banded collagen fibrils. J Cell Biol 113:971–978.

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa H et al (1998) Molecular cloning and expression of glucuronyltransferase I involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans. J Biol Chem 273:6615–6618.

    Article  CAS  PubMed  Google Scholar 

  • Kivirikko KI, Myllyla R (1982) Posttranslational enzymes in the biosynthesis of collagen: intracellular enzymes. Methods Enzymol 82(Pt A):245–304.

    Article  CAS  PubMed  Google Scholar 

  • Kivirikko KI, Pihlajaniemi T (1998) Collagen hydroxylases and the protein disulfide isomerase subunit of prolyl 4-hydroxylases. Adv Enzymol Relat Areas Mol Biol 72:325–398.

    CAS  PubMed  Google Scholar 

  • Klaassens M et al (2012) Ehlers-Danlos arthrochalasia type (VIIA-B)—expanding the phenotype: from prenatal life through adulthood. Clin Genet 82:121–130.

    Article  CAS  PubMed  Google Scholar 

  • Koch M, Bohrmann B, Matthison M, Hagios C, Trueb B, Chiquet M (1995) Large and small splice variants of collagen XII: differential expression and ligand binding. J Cell Biol 130:1005–1014.

    Article  CAS  PubMed  Google Scholar 

  • Kosho T, Takahashi J, Ohashi H, Nishimura G, Kato H, Fukushima Y (2005) Ehlers-Danlos syndrome type VIB with characteristic facies, decreased curvatures of the spinal column, and joint contractures in two unrelated girls. Am J Med Genet A 138A:282–287.

    Article  PubMed  Google Scholar 

  • Kosho T et al (2010) A new Ehlers-Danlos syndrome with craniofacial characteristics, multiple congenital contractures, progressive joint and skin laxity, and multisystem fragility-related manifestations. Am J Med Genet A 152a:1333–1346.

    PubMed  Google Scholar 

  • Krane SM, Pinnell SR, Erbe RW (1972) Lysyl-protocollagen hydroxylase deficiency in fibroblasts from siblings with hydroxylysine-deficient collagen. Proc Natl Acad Sci USA 69:2899–2903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kresse H, Rosthoj S, Quentin E, Hollmann J, Glossl J, Okada S, Tonnesen T (1987) Glycosaminoglycan-free small proteoglycan core protein is secreted by fibroblasts from a patient with a syndrome resembling progeroid. Am J Hum Genet 41:436–453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kusche-Gullberg M, Kjellen L (2003) Sulfotransferases in glycosaminoglycan biosynthesis. Curr Opin Struct Biol 13:605–611.

    Article  CAS  PubMed  Google Scholar 

  • Lapiere CM, Lenaers A, Kohn LD (1971) Procollagen peptidase: an enzyme excising the coordination peptides of procollagen. Proc Natl Acad Sci USA 68:3054–3058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lautrup CK et al (2020) Delineation of musculocontractural Ehlers-Danlos syndrome caused by dermatan sulfate epimerase deficiency. Mol Genet Genom Med 8:e1197.

    CAS  Google Scholar 

  • Layne MD, Yet SF, Maemura K, Hsieh CM, Bernfield M, Perrella MA, Lee ME (2001) Impaired abdominal wall development and deficient wound healing in mice lacking aortic carboxypeptidase-like protein. Mol Cell Biol 21:5256–5261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Goff C, Somerville RP, Kesteloot F, Powell K, Birk DE, Colige AC, Apte SS (2006) Regulation of procollagen amino-propeptide processing during mouse embryogenesis by specialization of homologous ADAMTS proteases: insights on collagen biosynthesis and dermatosparaxis. Development 133:1587–1596.

    Article  PubMed  CAS  Google Scholar 

  • Lenaers A, Ansay M, Nusgens BV, Lapiere CM (1971) Collagen made of extended -chains, procollagen, in genetically-defective dermatosparaxic calves. Eur J Biochem 23:533–543

    Article  CAS  PubMed  Google Scholar 

  • Lethias C, Descollonges Y, Boutillon MM, Garrone R (1996) Flexilin: a new extracellular matrix glycoprotein localized on collagen fibrils. Matrix Biol 15:11–19.

    Article  CAS  PubMed  Google Scholar 

  • Lethias C, Carisey A, Comte J, Cluzel C, Exposito JY (2006) A model of tenascin-X integration within the collagenous network. FEBS Lett 580:6281–6285.

    Article  CAS  PubMed  Google Scholar 

  • Li SW et al (2001) Transgenic mice with inactive alleles for procollagen N-proteinase (ADAMTS-2) develop fragile skin and male sterility. Biochem J 355:271–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtenstein JRMG, Kohn LD, Byers PH, McKusick VA (1973) Defect in conversion of procollagen to collagen in a form of Ehlers–Danlos syndrome. Science 182:298–300

    Article  CAS  PubMed  Google Scholar 

  • Linsenmayer TF, Gibney E, Igoe F, Gordon MK, Fitch JM, Fessler LI, Birk DE (1993) Type V collagen: molecular structure and fibrillar organization of the chicken alpha 1(V) NH2-terminal domain, a putative regulator of corneal fibrillogenesis. J Cell Biol 121:1181–1189.

    Article  CAS  PubMed  Google Scholar 

  • Littré E (1839) Oeuvres Complètes d’Hippocrate, vol 2. Paris

    Google Scholar 

  • Liu X, Wu H, Byrne M, Krane S, Jaenisch R (1997) Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc Natl Acad Sci USA 94:1852–1856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YA et al (2020) Pathologic skull fracture in a near-term neonate with arthrochalasia type Ehlers-Danlos syndrome: a case report. Fetal Pediatr Pathol 1–6.

    Google Scholar 

  • Loughlin J, Irven C, Hardwick LJ, Butcher S, Walsh S, Wordsworth P, Sykes B (1995) Linkage of the gene that encodes the alpha 1 chain of type V collagen (COL5A1) to type II Ehlers-Danlos syndrome (EDS II). Hum Mol Genet 4:1649–1651.

    Article  CAS  PubMed  Google Scholar 

  • Lund A, Joensen F, Christensen E, Duno M, Skovby F, Schwartz M (2008) A novel arginine-to-cysteine substitution in the triple helical region of the alpha1(I) collagen chain in a family with an osteogenesis imperfecta/Ehlers-Danlos phenotype. Clin Genet 73:97–101.

    Article  CAS  PubMed  Google Scholar 

  • Maccarana M et al (2006) Biosynthesis of dermatan sulfate: chondroitin-glucuronate C5-epimerase is identical to SART2. J Biol Chem 281:11560–11568.

    Article  CAS  PubMed  Google Scholar 

  • Maccarana M, Kalamajski S, Kongsgaard M, Magnusson SP, Oldberg A, Malmstrom A (2009) Dermatan sulfate epimerase 1-deficient mice have reduced content and changed distribution of iduronic acids in dermatan sulfate and an altered collagen structure in skin. Mol Cell Biol 29:5517–5528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macsai MS, Lemley HL, Schwartz T (2000) Management of oculus fragilis in Ehlers-Danlos type VI. Cornea 19:104–107.

    Article  CAS  PubMed  Google Scholar 

  • Madri JA, Foellmer HG, Furthmayr H (1982) Type V collagens of the human placenta: trimer alpha-chain composition, ultrastructural morphology and peptide analysis. Coll Relat Res 2:19–29.

    Article  CAS  PubMed  Google Scholar 

  • Makareeva E, Cabral WA, Marini JC, Leikin S (2006) Molecular mechanism of alpha 1(I)-osteogenesis imperfecta/Ehlers-Danlos syndrome: unfolding of an N-anchor domain at the N-terminal end of the type I collagen triple helix. J Biol Chem 281:6463–6470.

    Article  CAS  PubMed  Google Scholar 

  • Malfait F, De Paepe A (2005) Molecular genetics in classic Ehlers-Danlos syndrome. Am J Med Genet C Semin Med Genet 139C:17–23.

    Article  CAS  PubMed  Google Scholar 

  • Malfait F, Coucke P, Symoens S, Loeys B, Nuytinck L, De Paepe A (2005) The molecular basis of classic Ehlers-Danlos syndrome: a comprehensive study of biochemical and molecular findings in 48 unrelated patients. Hum Mutat 25:28–37.

    Article  CAS  PubMed  Google Scholar 

  • Malfait F, Symoens S, Coucke P, Nunes L, De Almeida S, De Paepe A (2006) Total absence of the alpha2(I) chain of collagen type I causes a rare form of Ehlers-Danlos syndrome with hypermobility and propensity to cardiac valvular problems J Med Genet 43:e36

    Google Scholar 

  • Malfait F et al (2007) Three arginine to cysteine substitutions in the pro-alpha (I)-collagen chain cause Ehlers-Danlos syndrome with a propensity to arterial rupture in early adulthood. Hum Mutat 28:387–395.

    Article  CAS  PubMed  Google Scholar 

  • Malfait F et al (2010) Musculocontractural Ehlers-Danlos syndrome (former EDS type VIB) and adducted thumb clubfoot syndrome (ATCS) represent a single clinical entity caused by mutations in the dermatan-4-sulfotransferase 1 encoding CHST14 gene. Hum Mutat 31:1233–1239.

    Article  CAS  PubMed  Google Scholar 

  • Malfait F et al (2013a) Defective initiation of glycosaminoglycan synthesis due to B3GALT6 mutations causes a pleiotropic Ehlers-Danlos-syndrome-like connective tissue disorder. Am J Hum Genet 92:935–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malfait F et al (2013b) Helical mutations in type I collagen that affect the processing of the amino-propeptide result in an osteogenesis imperfecta/Ehlers-Danlos syndrome overlap syndrome. Orphanet J Rare Dis 8:78.

    Article  PubMed  PubMed Central  Google Scholar 

  • Malfait F et al (2017) The 2017 international classification of the Ehlers-Danlos syndromes. Am J Med Genet Part C Semin Med Genet 175:8–26.

    Article  PubMed  Google Scholar 

  • Mao JR et al (2002) Tenascin-X deficiency mimics Ehlers-Danlos syndrome in mice through alteration of collagen deposition. Nat Genet 30:421–425.

    Article  CAS  PubMed  Google Scholar 

  • Marchant JK, Hahn RA, Linsenmayer TF, Birk DE (1996) Reduction of type V collagen using a dominant-negative strategy alters the regulation of fibrillogenesis and results in the loss of corneal-specific fibril morphology. J Cell Biol 135:1415–1426.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Sawa H, Sato M, Orba Y, Nagashima K, Ariga H (2002) Distribution of extracellular matrix tenascin-X in sciatic nerves. Acta Neuropathol 104:448–454.

    Article  CAS  PubMed  Google Scholar 

  • McKusick VA (1956) Heritable disorders of connective tissue. IV. The Ehlers-Danlos syndrome. J Chronic Dis 3:2–24.

    Article  CAS  PubMed  Google Scholar 

  • Minamitani T, Ariga H, Matsumoto K (2004) Deficiency of tenascin-X causes a decrease in the level of expression of type VI collagen. Exp Cell Res 297:49–60.

    Article  CAS  PubMed  Google Scholar 

  • Miyake N et al (2010) Loss-of-function mutations of CHST14 in a new type of Ehlers-Danlos syndrome. Hum Mutat 31:966–974.

    Article  CAS  PubMed  Google Scholar 

  • Miyake N, Kosho T, Matsumoto N (2014) Ehlers-Danlos syndrome associated with glycosaminoglycan abnormalities. Adv Exp Med Biol 802:145–159.

    Article  CAS  PubMed  Google Scholar 

  • Moradi-Ameli M et al (1994) Diversity in the processing events at the N-terminus of type-V collagen. Eur J Biochem 221:987–995.

    Article  CAS  PubMed  Google Scholar 

  • Morlino S et al (2020) COL1-related overlap disorder: a novel connective tissue disorder incorporating the osteogenesis imperfecta/Ehlers-Danlos syndrome overlap. Clin Genet 97:396–406.

    Article  CAS  PubMed  Google Scholar 

  • Muller GA, Hansen U, Xu Z, Griswold B, Talan MI, McDonnell NB, Briest W (2012) Allele-specific siRNA knockdown as a personalized treatment strategy for vascular Ehlers-Danlos syndrome in human fibroblasts. FASEB J 26:668–677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller T et al (2013) Loss of dermatan sulfate epimerase (DSE) function results in musculocontractural Ehlers-Danlos syndrome. Hum Mol Genet 22:3761–3772.

    Article  PubMed  CAS  Google Scholar 

  • Murray ML, Yang M, Fauth C, Byers PH (2014) FKBP14-related Ehlers-Danlos syndrome: expansion of the phenotype to include vascular complications. Am J Med Genet A 164A:1750–1755.

    Article  PubMed  CAS  Google Scholar 

  • Myllyla R et al (2007) Expanding the lysyl hydroxylase toolbox: new insights into the localization and activities of lysyl hydroxylase 3 (LH3). J Cell Physiol 212:323–329.

    Article  CAS  PubMed  Google Scholar 

  • Nakajima M et al (2013) Mutations in B3GALT6, which encodes a glycosaminoglycan linker region enzyme, cause a spectrum of skeletal and connective tissue disorders. Am J Hum Genet 92:927–934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholls AC et al (1984) The clinical features of homozygous alpha 2(I) collagen deficient osteogenesis imperfecta. J Med Genet 21:257–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholls AC, De Paepe A, Narcisi P, Dalgleish R, De Keyser F, Matton M, Pope FM (1988) Linkage of a polymorphic marker for the type III collagen gene (COL3A1) to atypical autosomal dominant Ehlers-Danlos syndrome type IV in a large Belgian pedigree. Hum Genet 78:276–281

    Article  CAS  PubMed  Google Scholar 

  • Nicholls AC, Oliver JE, McCarron S, Harrison JB, Greenspan DS, Pope FM (1996) An exon skipping mutation of a type V collagen gene (COL5A1) in Ehlers-Danlos syndrome. J Med Genet 33:940–946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholls AC, Valler D, Wallis S, Pope FM (2001) Homozygosity for a splice site mutation of the COL1A2 gene yields a non-functional pro(alpha)2(I) chain and an EDS/OI clinical phenotype. J Med Genet 38:132–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niyibizi C, Eyre DR (1993) Structural analysis of the extension peptides on matrix forms of type V collagen in fetal calf bone and skin. Biochim Biophys Acta 1203:304–309.

    Article  CAS  PubMed  Google Scholar 

  • Niyibizi C, Eyre DR (1994) Structural characteristics of cross-linking sites in type V collagen of bone. Chain specificities and heterotypic links to type I collagen. Eur J Biochem 224:943–950.

    Article  CAS  PubMed  Google Scholar 

  • Niyibizi C, Fietzek PP, van der Rest M (1984) Human placenta type V collagens. Evidence for the existence of an alpha 1(V) alpha 2(V) alpha 3(V) collagen molecule. J Biol Chem 259:14170–14174

    Article  CAS  PubMed  Google Scholar 

  • Nusgens BV, Verellen-Dumoulin C, Hermanns-Le T, De Paepe A, Nuytinck L, Pierard GE, Lapiere CM (1992) Evidence for a relationship between Ehlers-Danlos type VII C in humans and bovine dermatosparaxis. Nat Genet 1:214–217.

    Article  CAS  PubMed  Google Scholar 

  • Nuytinck L, Freund M, Lagae L, Pierard GE, Hermanns-Le T, De Paepe A (2000) Classical Ehlers-Danlos syndrome caused by a mutation in type I collagen. Am J Hum Genet 66:1398–1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Hara PJ, Read WK, Romane WM, Bridges CH (1970) A collagenous tissue dysplasia of calves. Lab Investig 23:307–314

    CAS  PubMed  Google Scholar 

  • Ogur G, Baykan N, De Paepe A, Steinmann B, Quatacker J, Kuseyri F, Yuksel-Apak M (1994) Clinical, ultrastructural and biochemical studies in two sibs with Ehlers-Danlos syndrome type VI-B-like features. Clin Genet 46:417–422.

    Article  CAS  PubMed  Google Scholar 

  • Okajima T, Fukumoto S, Furukawa K, Urano T (1999) Molecular basis for the progeroid variant of Ehlers-Danlos syndrome. Identification and characterization of two mutations in galactosyltransferase I gene. J Biol Chem 274:28841–28844

    Article  CAS  PubMed  Google Scholar 

  • Pacheco B, Maccarana M, Malmstrom A (2009a) Dermatan 4-O-sulfotransferase 1 is pivotal in the formation of iduronic acid blocks in dermatan sulfate. Glycobiology 19:1197–1203.

    Article  CAS  PubMed  Google Scholar 

  • Pacheco B, Malmstrom A, Maccarana M (2009b) Two dermatan sulfate epimerases form iduronic acid domains in dermatan sulfate. J Biol Chem 284:9788–9795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park AC et al (2015) Homozygosity and heterozygosity for null Col5a2 alleles produce embryonic lethality and a novel classic Ehlers-Danlos syndrome-related phenotype. Am J Pathol 185:2000–2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passoja K, Rautavuoma K, Ala-Kokko L, Kosonen T, Kivirikko KI (1998) Cloning and characterization of a third human lysyl hydroxylase isoform. Proc Natl Acad Sci USA 95:10482–10486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pepin MG, Schwarze U, Rice KM, Liu M, Leistritz D, Byers PH (2014) Survival is affected by mutation type and molecular mechanism in vascular Ehlers-Danlos syndrome (EDS type IV). Genet Med 16:881–888.

    Article  CAS  PubMed  Google Scholar 

  • Pierard GE, Lapiere M (1976) Skin in dermatosparaxis. Dermal microarchitecture and biomechanical properties. J Investig Dermatol 66:2–7.

    Article  CAS  PubMed  Google Scholar 

  • Pihlajaniemi T, Dickson LA, Pope FM, Korhonen VR, Nicholls A, Prockop DJ, Myers JC (1984) Osteogenesis imperfecta: cloning of a pro-alpha 2(I) collagen gene with a frameshift mutation. J Biol Chem 259:12941–12944

    Article  CAS  PubMed  Google Scholar 

  • Pinnell SR, Krane SM, Kenzora JE, Glimcher MJ (1972) A heritable disorder of connective tissue. Hydroxylysine-deficient collagen disease. N Engl J Med 286:1013–1020.

    Article  CAS  PubMed  Google Scholar 

  • Plancke A, Holder-Espinasse M, Rigau V, Manouvrier S, Claustres M, Khau Van Kien P (2009) Homozygosity for a null allele of COL3A1 results in recessive Ehlers-Danlos syndrome. Eur J Hum Genet 17:1411–1416.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pogany G, Vogel KG (1992) The interaction of decorin core protein fragments with type I collagen. Biochem Biophys Res Commun 189:165–172.

    Article  CAS  PubMed  Google Scholar 

  • Pope FM, Martin GR, Lichtenstein JR, Penttinen R, Gerson B, Rowe DW, McKusick VA (1975) Patients with Ehlers-Danlos syndrome type IV lack type III collagen. Proc Natl Acad Sci USA 72:1314–1316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pope FM, Martin GR, McKusick VA (1977) Inheritance of Ehlers-Danlos type IV syndrome. J Med Genet 14:200–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pousi B, Hautala T, Heikkinen J, Pajunen L, Kivirikko KI, Myllyla R (1994) Alu-Alu recombination results in a duplication of seven exons in the lysyl hydroxylase gene in a patient with the type VI variant of Ehlers-Danlos syndrome. Am J Hum Genet 55:899–906

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quentin E, Gladen A, Roden L, Kresse H (1990) A genetic defect in the biosynthesis of dermatan sulfate proteoglycan: galactosyltransferase I deficiency in fibroblasts from a patient with a progeroid syndrome. Proc Natl Acad Sci USA 87:1342–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman N et al (2003) Ehlers-Danlos syndrome with severe early-onset periodontal disease (EDS-VIII) is a distinct, heterogeneous disorder with one predisposition gene at chromosome 12p13. Am J Hum Genet 73:198–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards AJ, Martin S, Nicholls AC, Harrison JB, Pope FM, Burrows NP (1998) A single base mutation in COL5A2 causes Ehlers-Danlos syndrome type II. J Med Genet 35:846–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritelli M, Cinquina V, Venturini M, Pezzaioli L, Formenti AM, Chiarelli N, Colombi M (2019) Expanding the clinical and mutational spectrum of recessive AEBP1-related classical-like Ehlers-Danlos syndrome. Genes 10.

    Google Scholar 

  • Ritelli M et al (2013) Clinical and molecular characterization of 40 patients with classic Ehlers-Danlos syndrome: identification of 18 COL5A1 and 2 COL5A2 novel mutations. Orphanet J Rare Dis 8:58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rohrbach MSH, Porter LF, Burkitt-Wright EM, Bürer C, Janecke A, Bakshi M, Sillence D, Al-Hussain H, Baumgartner M, Steinmann B, Black GC, Manson FD, Giunta C (2013) ZNF469 frequently mutated in the brittle cornea syndrome (BCS) is a single exon gene possibly regulating the expression of several extracellular matrix components. Mol Genet Metab 109:289–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohrbach M et al (2011) Phenotypic variability of the kyphoscoliotic type of Ehlers-Danlos syndrome (EDS VIA): clinical, molecular and biochemical delineation. Orphanet J Rare Dis 6:46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Romanic AM, Adachi E, Kadler KE, Hojima Y, Prockop DJ (1991) Copolymerization of pNcollagen III and collagen I. pNcollagen III decreases the rate of incorporation of collagen I into fibrils, the amount of collagen I incorporated, and the diameter of the fibrils formed. J Biol Chem 266:12703–12709

    Article  CAS  PubMed  Google Scholar 

  • Sack G (1936) Status dysvascularis, ein Fall von “Cutis laxa” (Vater und Sohn). Muench Med Wochenschr 15:259–260

    Google Scholar 

  • Sage H, Bornstein P (1979) Characterization of a novel collagen chain in human placenta and its relation to AB collagen. Biochemistry 18:3815–3822.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Arai K, Ono M, Yamaguchi T, Furuta S, Nagai Y (1987) Ehlers-Danlos syndrome. A variant characterized by the deficiency of pro alpha 2 chain of type I procollagen. Arch Dermatol 123:76–79

    Article  CAS  PubMed  Google Scholar 

  • Schalkwijk J et al (2001) A recessive form of the Ehlers-Danlos syndrome caused by tenascin-X deficiency. N Engl J Med 345:1167–1175.

    Article  CAS  PubMed  Google Scholar 

  • Schissel SL, Dunsmore SE, Liu X, Shine RW, Perrella MA, Layne MD (2009) Aortic carboxypeptidase-like protein is expressed in fibrotic human lung and its absence protects against bleomycin-induced lung fibrosis. Am J Pathol 174:818–828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarze U, Atkinson M, Hoffman GG, Greenspan DS, Byers PH (2000) Null alleles of the COL5A1 gene of type V collagen are a cause of the classical forms of Ehlers-Danlos syndrome (types I and II). Am J Hum Genet 66:1757–1765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarze U, Hata R, McKusick VA, Shinkai H, Hoyme HE, Pyeritz RE, Byers PH (2004) Rare autosomal recessive cardiac valvular form of Ehlers-Danlos syndrome results from mutations in the COL1A2 gene that activate the nonsense-mediated RNA decay pathway. Am J Hum Genet 74:917–930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarze U et al (2001) Haploinsufficiency for one COL3A1 allele of type III procollagen results in a phenotype similar to the vascular form of Ehlers-Danlos syndrome, Ehlers-Danlos syndrome type IV. Am J Hum Genet 69:989–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott JE (1988) Proteoglycan-fibrillar collagen interactions. Biochem J 252:313–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott PG (1991) Physical studies on the protein core of skin dermatan sulphate proteoglycan II (decorin). Biochem Soc Trans 19:377S.

    Article  CAS  PubMed  Google Scholar 

  • Seidler DG et al (2006) Defective glycosylation of decorin and biglycan, altered collagen structure, and abnormal phenotype of the skin fibroblasts of an Ehlers-Danlos syndrome patient carrying the novel Arg270Cys substitution in galactosyltransferase I (beta4GalT-7). J Mol Med (Berl) 84:583–594.

    Article  CAS  Google Scholar 

  • Shi L et al (2017) Comprehensive population screening in the Ashkenazi Jewish population for recurrent disease-causing variants. Clin Genet 91:599–604.

    Article  CAS  PubMed  Google Scholar 

  • Silbert JE, Sugumaran G (2002) Biosynthesis of chondroitin/dermatan sulfate. IUBMB Life 54:177–186.

    Article  CAS  PubMed  Google Scholar 

  • Smith LB et al (2011) Haploinsufficiency of the murine Col3a1 locus causes aortic dissection: a novel model of the vascular type of Ehlers-Danlos syndrome. Cardiovasc Res 90:182–190.

    Article  CAS  PubMed  Google Scholar 

  • Smith LT, Schwarze U, Goldstein J, Byers PH (1997) Mutations in the COL3A1 gene result in the Ehlers-Danlos syndrome type IV and alterations in the size and distribution of the major collagen fibrils of the dermis. J Invest Dermatol 108:241–247.

    Article  CAS  PubMed  Google Scholar 

  • Smith LTWW, Milstone LM, Petty EM, Seashore MR, Braverman IM, Jenkins TG, Byers PH (1992) Human dermatosparaxis: a form of Ehlers-Danlos syndrome that results from failure to remove the amino-terminal propeptide of type I procollagen. Am J Hum Genet 51:235–244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sokolov BP, Prytkov AN, Tromp G, Knowlton RG, Prockop DJ (1991) Exclusion of COL1A1, COL1A2, and COL3A1 genes as candidate genes for Ehlers-Danlos syndrome type I in one large family. Hum Genet 88:125–129.

    Article  CAS  PubMed  Google Scholar 

  • Steiglitz BM, Keene DR, Greenspan DS (2002) PCOLCE2 encodes a functional procollagen C-proteinase enhancer (PCPE2) that is a collagen-binding protein differing in distribution of expression and post-translational modification from the previously described PCPE1. J Biol Chem 277:49820–49830.

    Article  CAS  PubMed  Google Scholar 

  • Steinmann BGR, Vogel A, Grant ME, Harwood R, Sear CH (1975) Ehlers-Danlos syndrome in two siblings with deficient lysyl hydroxylase activity in cultured skin fibroblasts but only mild hydroxylysine deficit in skin. Helv Paediatr Acta 30:255–274

    CAS  PubMed  Google Scholar 

  • Steinmann BRP, Superti-Furga A (2002) The Ehlers–Danlos syndrome. Connective tissue and its heritable disorders, 2nd edn. Wiley-Liss, New York

    Google Scholar 

  • Steinmann BTL, Peltonen L, Martin GR, McKusick VA, Prockop DJ (1980) Evidence for a structural mutation of procollagen type I in a patient with the Ehlers-Danlos syndrome type VII. J Biol Chem 255:8887–8893

    Article  CAS  PubMed  Google Scholar 

  • Stewart RE, Hollister DW, Rimoin DL (1977) A new variant of Ehlers-Danlos syndrome: an autosomal dominant disorder of fragile skin, abnormal scarring, and generalized periodontitis. Birth Defects 13:85–93

    CAS  PubMed  Google Scholar 

  • Superti-Furga A, Gugler E, Gitzelmann R, Steinmann B (1988) Ehlers-Danlos syndrome type IV: a multi-exon deletion in one of the two COL3A1 alleles affecting structure, stability, and processing of type III procollagen. J Biol Chem 263:6226–6232

    Article  CAS  PubMed  Google Scholar 

  • Symoens S et al (2009) COL5A1 signal peptide mutations interfere with protein secretion and cause classic Ehlers-Danlos syndrome. Hum Mutat 30:E395–E403.

    Article  PubMed  Google Scholar 

  • Symoens S et al (2012) Comprehensive molecular analysis demonstrates type V collagen mutations in over 90% of patients with classic EDS and allows to refine diagnostic criteria. Hum Mutat 33:1485–1493.

    Article  CAS  PubMed  Google Scholar 

  • Syx D et al (2019) Bi-allelic AEBP1 mutations in two patients with Ehlers-Danlos syndrome. Hum Mol Genet 28:1853–1864.

    Article  CAS  PubMed  Google Scholar 

  • Syx D et al (2015) Genetic heterogeneity and clinical variability in musculocontractural Ehlers-Danlos syndrome caused by impaired dermatan sulfate biosynthesis. Hum Mutat 36:535–547.

    Article  CAS  PubMed  Google Scholar 

  • Takahara K et al (2002) Order of intron removal influences multiple splice outcomes, including a two-exon skip, in a COL5A1 acceptor-site mutation that results in abnormal pro-alpha1(V) N-propeptides and Ehlers-Danlos syndrome type I. Am J Hum Genet 71:451–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takaluoma K et al (2007) Tissue-specific changes in the hydroxylysine content and cross-links of collagens and alterations in fibril morphology in lysyl hydroxylase 1 knock-out mice. J Biol Chem 282:6588–6596.

    Article  CAS  PubMed  Google Scholar 

  • Takeda U et al (2002) Targeted disruption of dermatopontin causes abnormal collagen fibrillogenesis. J Invest Dermatol 119:678–683.

    Article  CAS  PubMed  Google Scholar 

  • Tasheva ES et al (2002) Mimecan/osteoglycin-deficient mice have collagen fibril abnormalities. Mol Vis 8:407–415

    CAS  PubMed  Google Scholar 

  • Teratani T et al (2018) Aortic carboxypeptidase-like protein, a WNT ligand, exacerbates nonalcoholic steatohepatitis. J Clin Investig 128:1581–1596.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thelin MA et al (2013) Biological functions of iduronic acid in chondroitin/dermatan sulfate. FEBS J 280:2431–2446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ticho U, Ivry M, Merin S (1980) Brittle cornea, blue sclera, and red hair syndrome (the brittle cornea syndrome). Br J Ophthalmol 64:175–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toriello HV, Glover TW, Takahara K, Byers PH, Miller DE, Higgins JV, Greenspan DS (1996) A translocation interrupts the COL5A1 gene in a patient with Ehlers-Danlos syndrome and hypomelanosis of Ito. Nat Genet 13:361–365.

    Article  CAS  PubMed  Google Scholar 

  • Trowbridge JM, Gallo RL (2002) Dermatan sulfate: new functions from an old glycosaminoglycan. Glycobiology 12:117R–125R.

    Article  CAS  PubMed  Google Scholar 

  • Tsipouras P et al (1986) Ehlers-Danlos syndrome type IV: cosegregation of the phenotype to a COL3A1 allele of type III procollagen. Hum Genet 74:41–46.

    Article  CAS  PubMed  Google Scholar 

  • Tumelty KE, Smith BD, Nugent MA, Layne MD (2014) Aortic carboxypeptidase-like protein (ACLP) enhances lung myofibroblast differentiation through transforming growth factor beta receptor-dependent and -independent pathways. J Biol Chem 289:2526–2536.

    Article  CAS  PubMed  Google Scholar 

  • Uzawa K, Grzesik WJ, Nishiura T, Kuznetsov SA, Robey PG, Brenner DA, Yamauchi M (1999) Differential expression of human lysyl hydroxylase genes, lysine hydroxylation, and cross-linking of type I collagen during osteoblastic differentiation in vitro. J Bone Miner Res 14:1272–1280.

    Article  CAS  PubMed  Google Scholar 

  • Vadon-Le Goff S et al (2011) Procollagen C-proteinase enhancer stimulates procollagen processing by binding to the C-propeptide region only. J Biol Chem 286:38932–38938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valcourt U, Alcaraz LB, Exposito JY, Lethias C, Bartholin L (2015) Tenascin-X: beyond the architectural function. Cell Adhes Migr 9:154–165.

    Article  CAS  Google Scholar 

  • Valtavaara M, Papponen H, Pirttila AM, Hiltunen K, Helander H, Myllyla R (1997) Cloning and characterization of a novel human lysyl hydroxylase isoform highly expressed in pancreas and muscle. J Biol Chem 272:6831–6834.

    Article  CAS  PubMed  Google Scholar 

  • Valtavaara M, Szpirer C, Szpirer J, Myllyla R (1998) Primary structure, tissue distribution, and chromosomal localization of a novel isoform of lysyl hydroxylase (lysyl hydroxylase 3). J Biol Chem 273:12881–12886.

    Article  CAS  PubMed  Google Scholar 

  • Van Damme T et al (2016) Expanding the clinical and mutational spectrum of the Ehlers-Danlos syndrome, dermatosparaxis type. Genet Med 18:882–891.

    Article  PubMed  CAS  Google Scholar 

  • Van Damme T et al (2018) Biallelic B3GALT6 mutations cause spondylodysplastic Ehlers-Danlos syndrome. Hum Mol Genet 27:3475–3487.

    Article  PubMed  CAS  Google Scholar 

  • van der Slot AJ et al (2003) Identification of PLOD2 as telopeptide lysyl hydroxylase, an important enzyme in fibrosis. J Biol Chem 278:40967–40972.

    Article  PubMed  CAS  Google Scholar 

  • van Mee’ren J (1668) Een Rekkelÿke Spanjert Heel- en Geneeskonstige Aanmerkingen Van Job van Meek’ren; in sijn leven Heelmeester der Stadt, Admiraliteyt en ‘t Gasthuys binnen Amsterdam Met koopere Plaaten verçiert T’Amsterdam, by Casparus Cooelijn, op ‘t Water, in de Waarheyt 170–172

    Google Scholar 

  • Vandervore L et al (2017) Bi-allelic variants in COL3A1 encoding the ligand to GPR56 are associated with cobblestone-like cortical malformation, white matter changes and cerebellar cysts. J Med Genet 54:432–440.

    Article  CAS  PubMed  Google Scholar 

  • Veit G, Hansen U, Keene DR, Bruckner P, Chiquet-Ehrismann R, Chiquet M, Koch M (2006) Collagen XII interacts with avian tenascin-X through its NC3 domain. J Biol Chem 281:27461–27470.

    Article  CAS  PubMed  Google Scholar 

  • Vogel A, Holbrook KA, Steinmann B, Gitzelmann R, Byers PH (1979) Abnormal collagen fibril structure in the gravis form (type I) of Ehlers-Danlos syndrome. Lab Investig 40:201–206

    CAS  PubMed  Google Scholar 

  • Vogel KG, Paulsson M, Heinegard D (1984) Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem J 223:587–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber FP (1936) Ehlers-Danlos syndrome. Proc R Soc Med 30:30–31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weil D, Bernard M, Combates N, Wirtz MK, Hollister DW, Steinmann B, Ramirez F (1988) Identification of a mutation that causes exon skipping during collagen pre-mRNA splicing in an Ehlers-Danlos syndrome variant. J Biol Chem 263:8561–8564

    Article  CAS  PubMed  Google Scholar 

  • Wenstrup RJ, Florer JB, Brunskill EW, Bell SM, Chervoneva I, Birk DE (2004a) Type V collagen controls the initiation of collagen fibril assembly. J Biol Chem 279:53331–53337.

    Article  CAS  PubMed  Google Scholar 

  • Wenstrup RJ, Florer JB, Cole WG, Willing MC, Birk DE (2004b) Reduced type I collagen utilization: a pathogenic mechanism in COL5A1 haplo-insufficient Ehlers-Danlos syndrome. J Cell Biochem 92:113–124.

    Article  CAS  PubMed  Google Scholar 

  • Wenstrup RJ et al (2006) Murine model of the Ehlers-Danlos syndrome. col5a1 haploinsufficiency disrupts collagen fibril assembly at multiple stages. J Biol Chem 281:12888–12895.

    Article  CAS  PubMed  Google Scholar 

  • Wenstrup RJ et al (2000) COL5A1 haploinsufficiency is a common molecular mechanism underlying the classical form of EDS. Am J Hum Genet 66:1766–1776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenstrup RJ, Langland GT, Willing MC, D'Souza VN, Cole WG (1996) A splice-junction mutation in the region of COL5A1 that codes for the carboxyl propeptide of pro alpha 1(V) chains results in the gravis form of the Ehlers-Danlos syndrome (type I). Hum Mol Genet 5:1733–1736.

    Article  CAS  PubMed  Google Scholar 

  • Wertelecki W, Smith LT, Byers P (1992) Initial observations of human dermatosparaxis: Ehlers-Danlos syndrome type VIIC. J Pediatr 121:558–564

    Article  CAS  PubMed  Google Scholar 

  • Wordsworth BP, Ogilvie DJ, Sykes BC (1991) Segregation analysis of the structural genes of the major fibrillar collagens provides further evidence of molecular heterogeneity in type II Ehlers-Danlos syndrome. Br J Rheumatol 30:173–177.

    Article  CAS  PubMed  Google Scholar 

  • Wordsworth P, Ogilvie D, Smith R, Sykes B (1985) Exclusion of the alpha 1(II) collagen structural gene as the mutant locus in type II Ehlers-Danlos syndrome Annals of the rheumatic diseases 44:431–433.

    CAS  PubMed  Google Scholar 

  • Xiao G, Wan Z, Fan Q, Tang X, Zhou B (2014) The metal transporter ZIP13 supplies iron into the secretory pathway in Drosophila melanogaster. eLife 3:e03191.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamauchi M, Shiiba M (2008) Lysine hydroxylation and cross-linking of collagen. Methods Mol Biol (Clifton, NJ) 446:95–108.

    Article  CAS  Google Scholar 

  • Yoshizawa T et al (2018) Vascular abnormalities in the placenta of Chst14−/− fetuses: implications in the pathophysiology of perinatal lethality of the murine model and vascular lesions in human CHST14/D4ST1 deficiency. Glycobiology 28:80–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoppi N, Gardella R, De Paepe A, Barlati S, Colombi M (2004) Human fibroblasts with mutations in COL5A1 and COL3A1 genes do not organize collagens and fibronectin in the extracellular matrix, down-regulate alpha2beta1 integrin, and recruit alphavbeta3 Instead of alpha5beta1 integrin. J Biol Chem 279:18157–18168.

    Article  CAS  PubMed  Google Scholar 

  • Zou Y et al (2014) Recessive and dominant mutations in COL12A1 cause a novel EDS/myopathy overlap syndrome in humans and mice. Hum Mol Genet 23:2339–2352.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Foundation Flanders (FWO), Belgium (11B7921N to MC, 12Q5920N to DS, 1842318N to FM and 3G041519 to FM) and a Methusalem Grant from Ghent University (grant number BOFMET2015000401). The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fransiska Malfait .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malfait, F., Vroman, R., Colman, M., Syx, D. (2021). Collagens in the Physiopathology of the Ehlers–Danlos Syndromes. In: Ruggiero, F. (eds) The Collagen Superfamily and Collagenopathies. Biology of Extracellular Matrix, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-67592-9_3

Download citation

Publish with us

Policies and ethics