Skip to main content

Pathogenesis and Host Immune Response in Leprosy

  • Chapter
  • First Online:
Microbial Pathogenesis

Abstract

Leprosy is an ancient insidious disease caused by Mycobacterium leprae, where the skin and peripheral nerves undergo chronic granulomatous infections, leading to sensory and motor impairment with characteristic deformities. Susceptibility to leprosy and its disease state are determined by the manifestation of innate immune resistance mediated by cells of monocyte lineage. Due to insufficient innate resistance, granulomatous infection is established, influencing the specific cellular immunity. The clinical presentation of leprosy ranges between two stable polar forms (tuberculoid to lepromatous) and three unstable borderline forms. The tuberculoid form involves Th1 response, characterized by a well demarcated granuloma, infiltrated by CD4+ T lymphocytes, containing epitheloid and multinucleated giant cells. In the lepromatous leprosy, there is no characteristic granuloma but only unstructured accumulation of ineffective macrophages containing engulfed pathogens. Th1 response, characterised by IFN-γ and IL-2 production, activates macrophages in order to kill intracellular pathogens. Conversely, a Th2 response, characterized by the production of IL-4, IL-5 and IL-10, helps in antibody production and consequently downregulates the cell-mediated immunity induced by the Th1 response. M. lepare has a long generation time and its inability to grow in culture under laboratory conditions makes its study challenging. The nine-banded armadillo still remains the best clinical and immunological model to study host-pathogen interaction in leprosy. In this chapter, we present cellular morphology and the genomic uniqueness of M. leprae, and how the pathogen shows tropism for Schwann cells, macrophages and dendritic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abebe F, Bjune G (2006) The emergence of Beijing family genotypes of Mycobacterium tuberculosis and low-level protection by bacille Calmette-Guérin (BCG) vaccines: is there a link? Clin Exp Immunol 145:389–397. https://doi.org/10.1111/j.1365-2249.2006.03162.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abulafia J, Vignale RA (1999) Leprosy: pathogenesis updated. Int J Dermatol 38:321–334

    CAS  PubMed  Google Scholar 

  • Alter A, Alcaïs A, Abel L, Schurr E (2008) Leprosy as a genetic model for susceptibility to common infectious diseases. Hum Genet 123:227–235

    PubMed  Google Scholar 

  • Andersen P, Doherty TM (2005) The success and failure of BCG—implications for a novel tuberculosis vaccine. Nat Rev Microbiol 3:656–662. https://doi.org/10.1038/nrmicro1211

    Article  CAS  PubMed  Google Scholar 

  • Anderson R (1983) The immunopharmacology of an-tileprosy agents. Lepr Rev 54:139–144

    CAS  PubMed  Google Scholar 

  • Ang P, Tay YK, Ng SK, Seow CS (2003) Fatal Lucio’s phenomenon in 2 patients with previously undiagnosed leprosy. J Am Acad Dermatol 48:958–961

    PubMed  Google Scholar 

  • Arnoldi J, Gerdes J, Flad HD (1990) Immunohistologic assessment of cytokine production of infiltrating cells in various forms of leprosy. Am J Pathol 137(4):749–753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balamayooran G, Pena M, Sharma R, Truman RW (2015) The armadillo as an animal model and reservoir host for Mycobacterium leprae. Clin Dermatol 33(1):108–115. https://doi.org/10.1016/j.clindermatol.2014.07.001

    Article  PubMed  Google Scholar 

  • Barreiro LB, Ali MB, Quach H, Laval G, Patin E, Pickrell JK et al (2009) Evolutionary dynamics of human Toll-like receptors and their different contributions to host defense. PLoS Genet 5(7):e1000562

    PubMed  PubMed Central  Google Scholar 

  • Bhat RM, Prakash C (2012) Leprosy: an overview of pathophysiology. Interdisc Perspect Infect Dis 1-6, 181089

    Google Scholar 

  • Binford CH (1956) Comprehensive program for the inoculation of human leprosy into laboratory animals. U S Public Heal Reports 71:995–996

    Google Scholar 

  • Blake LA, West BC, Lary CH, Todd JR (1987) Environmental nonhuman sources of leprosy. Clin Infect Dis 9:562–577. https://doi.org/10.1093/clinids/9.3.562

    Article  CAS  Google Scholar 

  • Bochud PY, Hawn TR, Aderem A (2003) A Toll-like receptor 2 polymorphism that is associated with lepromatous leprosy is unable to mediate mycobacterial signaling. J Immunol 170:3451–3454

    CAS  PubMed  Google Scholar 

  • Brennam PJ, Vissa VD (2001) Genomic evidence for the retention of the essential mycobacterial cell wall in the the otherwise defective Mycobacterium leprae. Lepr Rev 72(4):415–428

    Google Scholar 

  • Brennan P (1984) Mycobacterium leprae—the outer lipoidal surface. J Biosci:685–689

    Google Scholar 

  • Brennan PJ (2000) Skin test development in leprosy: progress with first generation skin test antigens, and an approach to the second generation. Lepr Rev 71(suppl):S50–S54

    PubMed  Google Scholar 

  • Britton WJ (1998) The management of leprosy reversal reactions. Lepr Rev 69:225–234

    CAS  PubMed  Google Scholar 

  • Britton WJ (2004) Leprosy. In: Cohen J, Powerly WG (eds) Infectious diseases, 2nd edn. Mosby, London, pp 1507–1513

    Google Scholar 

  • Britton W (2010) Leprosy. In: Cohen J, Powerly W, Opal S (eds) Infectious diseases, 3rd edn. Mosby, London, pp 1099–1105

    Google Scholar 

  • Britton WJ, Lockwood DNJ (2004) Leprosy. Lancet 363:1209–1219

    PubMed  Google Scholar 

  • Brosch R, Gordon SV, Garnier T, Eiglmeier K, Frigui W, Valenti P et al (2007) Genome plasticity of BCG and impact on vaccine efficacy. Proc Natl Acad Sci U S A 104:5596–5601. https://doi.org/10.1073/pnas.0700869104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cambau E, Saunderson P, Matsuoka M et al (2018) Antimicrobial resistance in leprosy: results of the first prospective open survey conducted by a WHO surveillance network for the period 2009–2015. Clin Microbiol Infect 24(12):1305–1310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan J, Fujiwara T, Brennan P, McNeil M, Turco SJ, Sibille J-C, Snapper M, Aisen P, Bloom BR (1989) Microbial glycolipids: possible virulence factors that scavenge oxygen radicals. Proc Natl Acad Sci U S A 86:2453–2457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan, M.M.F., Smoller, B.R. (2016). Overview of the Histopathology and Other Laboratory Investigations in Leprosy. Curr Trop Med Rep 3: 131–137. https://doi.org/10.1007/s40475-016-0086-y

  • Chatterjee KR, Das Gupta NN, De ML (1959) Electron microscopic observations on the morphology of Mycobacterium leprae. Exp Cell Res 18:521–527

    CAS  PubMed  Google Scholar 

  • Chattopadhyay A (1994) The granulomatous response and oral cavity. Indian J Dent Res 5:15–18

    CAS  PubMed  Google Scholar 

  • Chehl S, Job CK, Hastings RC (1985) Transmission of leprosy in nude mice. Am J Trop Med Hyg 34(6):1161–1166

    CAS  PubMed  Google Scholar 

  • Chen W-Z, Li C, Jiang G-Y, Ye X-S (2000) Leprosy in China: delay in the detection of cases. Ann Trop Med Parasitol 94:181–188. https://doi.org/10.1080/00034980057527

    Article  CAS  PubMed  Google Scholar 

  • Chen ZL, Yu WM, Strickland S (2007) Peripheral regeneration. Annu Rev Neurosci 30:209–233

    PubMed  Google Scholar 

  • Chiplunkar S, De Libero G, Kaufmann SH (1986) Mycobacterium leprae specific Lyt-2 T lymphocytes with cytolytic activity. Infect Immun 54(3):793–797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cole ST (1998) Comparative mycobacterial genomics. Curr Opin Microbiol 1:567–571

    CAS  PubMed  Google Scholar 

  • Cole ST, Eiglmeier K, Parkhill J et al (2001) Massive gene decay in the leprosy bacillus. Nature 409:1007–1011

    CAS  PubMed  Google Scholar 

  • Colston MJ, Hilson GRF (1976) Growth of Mycobacterium leprae and M. marinum in congenitally athymic (nude) mice. Nature 262:399–401. https://doi.org/10.1038/262399a0

    Article  CAS  PubMed  Google Scholar 

  • Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M et al (2013) Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet 45:1176–1182. https://doi.org/10.1038/ng.2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz D, Watson AD, Miller CS, Montoya D, Ochoa MT, Sieling PA et al (2008) Host-derived oxidized phospholipids and HDL regulate innate immunity in human leprosy. J Clin Invest 118:2917–2928

    CAS  PubMed  PubMed Central  Google Scholar 

  • D’Avila H, Melo RC, Parreira GG, Werneck-Barroso E, Castro-Faria-Neto HC, Bozza PT (2006) Mycobacterium bovis bacillus Calmette-Guérin induces TLR2- mediated formation of lipid bodies: intracellular domains for eicosanoid synthesis in vivo. J Immunol 176:3087–3097

    PubMed  Google Scholar 

  • Daffe M, McNeil M, Brennan PJ (1993) Major structural features of the cell wall arabinogalactans of Mycobacterium, Rhodococcus, and No-cardia spp. Carbohydr Res 249:383–398

    CAS  PubMed  Google Scholar 

  • Davey TF, Rees RJW (1974) The nasal discharge in leprosy: clinical and bacteriological aspects. Lepr Rev 45(2):121–134

    CAS  PubMed  Google Scholar 

  • de Medeiros Oliveira IVP, Deps PD, de Paula Antunes JMA (2019) Armadillos and leprosy: from infection to biological model. Rev Inst Med Trop Sao Paulo 61:e44. https://doi.org/10.1590/s1678-9946201961044

    Article  Google Scholar 

  • De Rojas V, Hernández O, Gil R (1994) Some factors influencing delay in leprosy diagnosis. Bull Pan Am Health Organ 28:156–162

    PubMed  Google Scholar 

  • De Sousa JR, Sotto MN, Quaresma JAS (2017) Leprosy as a complex infection: breakdown of the Th1 and Th2 immune paradigm in the immunopathogenesis of the disease. Front Immunol 8:1635

    PubMed  PubMed Central  Google Scholar 

  • Dennehy KM, Ferwerda G, Faro-Trindade I, Pyz E et al (2008) Syk kinase is required for collaborative cytokine production induced through dectin-1 and Toll-like receptors. Eur J Immunol 38:500–506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deps PD, Guedes BVS, Bucker Filho J, Andreatta MK, Marcari RS, Rodrigues LC (2006) Delay in the diagnosis of leprosy in the metropolitan region of Vitória, Brazil. Lepr Rev 77:41–47

    PubMed  Google Scholar 

  • Dockrell HM, Brahmbhatt S, Robertson BD et al (2000) A postgenomic approach to identification of Mycobacterium leprae-specific peptides as T-cell reagents. Infect Immun 68:5846–5855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Draper P, Kandler O, Darbre A (1987) Peptidoglycan and arabinoga-lactan of Mycobacterium leprae. J Gen Microbiol 133:1187–1194

    CAS  PubMed  Google Scholar 

  • Dugan E, Modlin RL, Rea TH (1985) An Indian immunological study of the Mitsuda reaction. Int J Lepr 53:404–409

    CAS  Google Scholar 

  • Duthie MS, Gillis TP, Reed SG (2011a) Advances and hurdles on the way toward a leprosy vaccine. Hum Vaccin 7:1172–1183. https://doi.org/10.4161/hv.7.11.16848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duthie MS, Hay MN, Rada EM, Convit J, Ito L, Oyafuso LKM et al (2011b) Specific IgG antibody responses may be used to monitor leprosy treatment efficacy and as recurrence prognostic markers. Eur J Clin Microbiol Infect Dis 30:1257–1265. https://doi.org/10.1007/s10096-011-1221-2

    Article  CAS  PubMed  Google Scholar 

  • Duthie MS, Pena MT, Ebenezer GJ, Gillis TP, Sharma R, Cunningham K, et al (2018) LepVax, a defined subunit vaccine that provides effective pre-exposure and post-exposure prophylaxis of M. leprae infection. npj Vaccines 3. https://doi.org/10.1038/s41541-018-0050-z

  • Elias D, Britton S, Aseffa A, Engers H, Akuffo H (2008) Poor immunogenicity of BCG in helminth infected population is associated with increased in vitro TGF-β production. Vaccine 26:3897–3902. https://doi.org/10.1016/j.vaccine.2008.04.083

    Article  CAS  PubMed  Google Scholar 

  • Ellard GA, Pannikar VK, Jesudasan K, Christian M (1988) Clofazimine and dapsone compliance in leprosy. Lepr Rev 59:205–213. https://doi.org/10.5935/0305-7518.19880026

    Article  CAS  PubMed  Google Scholar 

  • Emmanuelle C, Bonnafous P, Evelyne P, Sougakoff W, Baohong J, Vincent J (2002) Molecular detection of Rifampin and Ofloxacin resistance for patients who experience relapse of multibacillary leprosy. Clin Infect Dis 34:39–45. https://doi.org/10.1086/324623

    Article  Google Scholar 

  • Fachin LR, Soares CT, Belone AF, Trombone AP, Rosa PS, Guidella CC et al (2017) Immunohistochemical assessment of cell populations in leprosy-spectrum lesions and reactional forms. Histol Histopathol 32:385–396

    CAS  PubMed  Google Scholar 

  • Faget GH, Pogge RC, Johansen FA et al (1943) The promin treatment of leprosy: a progress report. PublHlthRept 58:1729

    CAS  Google Scholar 

  • Fancy SP, Chan JR, Baranzini SE, Franklin RJ, Rowitch DH (2011) Myelin regeneration: a recapitulation of development? Annu Rev Neurosci 34:21–43

    CAS  PubMed  Google Scholar 

  • Franco-Paredes C, Jacob JT, Stryjewska B, Yoder L (2009) Two patients with leprosy and the sudden appearance of inflammation in the skin and new sensory loss. PLoS Negl Trop Dis 3:e425. (1–5)

    PubMed  PubMed Central  Google Scholar 

  • Fulco TO, Lopes UG, Sarno EN, Sampaio EP, Saliba AM (2007) The proteasome function is required for Mycobacterium leprae-induced apoptosis and cytokine secretion. Immunol Lett 110(1):82–85

    CAS  PubMed  Google Scholar 

  • Garcia VE, Uyemura K, Sieling PA, Ochoa MT, Morita CT, Okamura H, Kurimoto M, Rea TH, Modlin RL (1999) IL-18 promotes type 1 cytokine production from NK cells and T cells in human intracellular infection. J Immunol 162:6114–6121

    CAS  PubMed  Google Scholar 

  • Geijtenbeek TB, Van Vliet SJ, Koppel EA, Sanchez-Hernandez M, Vandenbroucke-Grauls M, Appelmelk B, Van Kooyk Y (2003) Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med 197:7–17

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gelber RH, Grosse J (2012) The chemotherapy of leprosy: an interpretive history. Lepr Res 83:221–240

    Google Scholar 

  • Gelber RH, Brennan PJ, Hunter SW, Munn MW, Monson JM, Murray LP et al (1990) Effective vaccination of mice against leprosy bacilli with subunits of Mycobacterium leprae. Infect Immun 58:711–718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graham A, Furlong S, Margoles LM, Owusu K, Fraco-Paredes (2010) Clinical management of leprosy reactions. Infect Dis Clin Pract 18:235–238

    Google Scholar 

  • Gu L, Krahenbuhl JL (1995) Lysis effect of IL-2 LAK cells against Mycobacterium leprae-infected macrophages. Chin J Microbiol Immunol 8:234

    Google Scholar 

  • Hagge DA, Ray NA, Krahenbuhl JL, Adams LB (2004) An in vitro model for the lepromatous leprosy granuloma: fate of Mycobacterium leprae from target macrophages after interaction with normal and activated effector macrophages. J Immunol 172:7771–7779

    CAS  PubMed  Google Scholar 

  • Hagge DA, Parajuli P, Kunwar CB, Rana DRSJB, Thapa R, Neupane KD et al (2017) Opening a can of Worms: leprosy reactions and complicit soil-transmitted helminths. EBioMedicine 23:119–124. https://doi.org/10.1016/j.ebiom.2017.08.026

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen GHA (1874) Investigations concerning the etiology of leprosy. Norsk Magazin for Legevidenskaben 4:1–88

    Google Scholar 

  • Hawn TR, Misch EA, Dunstan SJ, Thwaites GE et al (2007) A common human TLR1 polymorphism regulates the innate immune response to lipopeptides. Eur J Immunol 37:2280–2289

    CAS  PubMed  Google Scholar 

  • Hernandez-Pando R, Bornstein QL, Aguilar Leon D, Orozco EH, Madrigal VK, Martinez CE (2000) Inflammatory cytokine production by immunological and foreign body multinucleated giant cells. Immunology 100:352–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    CAS  PubMed  Google Scholar 

  • Hoang T, Agger EM, Cassidy JP, Christensen JP, Andersen P (2015) Protein energy malnutrition during vaccination has limited influence on vaccine efficacy but abolishes immunity if administered during Mycobacterium tuberculosis infection. Infect Immun 83:2118–2126. https://doi.org/10.1128/IAI.03030-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irgens LM (2002) The discovery of the leprosy bacillus. Tidsskr Nor Laegeforen 122(7):708–709

    PubMed  Google Scholar 

  • James DG (2000) A clinicopathological classification of granulomatous disorders. Postgrad Med J 76:457–465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jessen KR, Mirsky R (2008) Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia 56:1552–1565

    PubMed  Google Scholar 

  • Ji B, Jamet P, Sow S, Perani EG, Traore I, Grosset JH (1997) High relapse rate among lepromatous leprosy patients treated with rifampin plus ofloxacin daily for 4 weeks. Antimicrob Agents Chemother 41:1953–1956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Job CK (1989) Nerve damage in leprosy. Int J Lepr Other Mycobact Dis 57:532–539

    CAS  PubMed  Google Scholar 

  • Job CK (1994) Pathology of leprosy. In: Hastings RC (ed) Leprosy, 2nd edn. Churchill Livingstone, Edinburg, pp 193–224

    Google Scholar 

  • Job CK (2000) Developments in experimental leprosy. Indian J Lepr 72(1):143–154

    CAS  PubMed  Google Scholar 

  • Job CK, Truman RW (1999) Mitsuda-negative, resistant nine-banded armadillos and enhanced mitsuda response to live M. leprae. Int J Lepr Other Mycobact Dis 67(4):475–477

    CAS  PubMed  Google Scholar 

  • Job CK, Jayakumar J, Aschhoff M (1999) Large numbers of Mycobacterium leprae are discharged from the intact skin of lepromatous patients; A preliminary report. Int J Lepr Other Mycobact Dis 67(2):164–167

    CAS  PubMed  Google Scholar 

  • Johnstone PA (1987) The search for animal models of leprosy. Int J Lepr Other Mycobact Dis 55:535–547

    CAS  PubMed  Google Scholar 

  • Kahawita IP, Lockwood DNJ (2008) Towards understanding the pathology of erythema nodosum leprosum. Trans R Soc Trop Med Hyg 102:329–337

    CAS  PubMed  Google Scholar 

  • Kaleab B, Ottenoff T, Converse P, Halapi E, Tadesse G, Rottenberg M, Kiessling R (1990) Mycobacterial-induced cytotoxic T cells as well as nonspecific killer cells derived from healthy individuals and leprosy patients. Eur J Immunol 20:2651

    CAS  PubMed  Google Scholar 

  • Kaplan G, Van Voorhis WC, Sarno EN, Nogueira N, Cohn ZA (1983) The cutaneous infiltrates of leprosy. A transmission electron microscopy study. J Exp Med 158:1145–1159

    CAS  PubMed  Google Scholar 

  • Katoch VM (1999) Molecular techniques for leprosy: present applications and future perspectives. Indian J. Lepr 71:45–59

    CAS  PubMed  Google Scholar 

  • Kaufmann SHE (1988) CD8_ T lymphocytes in intracellular antimicrobial infections. Immunol Today 9:168

    CAS  PubMed  Google Scholar 

  • Khanolkar-Young S, Rayment N, Brickell PM et al (1995) Tumour necrosis factor-alpha (TNF-alpha) synthesis is associated with the skin and peripheral nerve pathology of leprosy reversal reactions. Clin Exp Immunol 99:196–202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MJ, Wainwright HC, Locketz M, Bekker LG, Walther GB, Dittrich C et al (2010) Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med 2:258–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura H, Maeda Y, Takeshita F, Takaoka LE, Matsuoka M, Makino M (2004) Upregulation of T-cell-stimulating activity of mycobacteria-infected macrophages. Scand J Immunol 60:278–286

    CAS  PubMed  Google Scholar 

  • Kirchheimer WF, Storrs EE (1971) Attempts to establish the armadillo (Dasypus novemcinctus Linn.) as a model for the study of leprosy. I. Report of lepromatoid leprosy in an experimentally infected armadillo. Int J Lepr Other Mycobact Dis 39:693–702

    CAS  PubMed  Google Scholar 

  • Klenerman P (1987) Etiological factors in delayed–type hypersensitivity reactions in leprosy. Int J Lepr 55(4):702–712

    CAS  Google Scholar 

  • Krutzik SR, Ochoa MT, Sieling PA, Uematsu S, Ng YW, Legaspi A, Liu PT, Cole ST, Godowski PJ, Maeda Y, Sarno EN, Norgard MV, Brennan PJ, Akira S, Rea TH, Modlin RL (2003) Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nat Med 9:525–532

    CAS  PubMed  Google Scholar 

  • Krutzik SR, Tan B, Li H et al (2005) TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells. Nat Med 11:653–660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Narayanan RB, Malaviya GN (1989) Ultrastructural characteristics of macrophages in dermal leprosy granuloma: macrophages in leprosy granulomas. Jap J Leprosy 58:185–190

    CAS  Google Scholar 

  • Kumar BS, Dogra S, Kaur I (2004) Epidemiological characteristics of leprosy reactions: 15 years experience from north India. Int J Lepr Other Mycobact Dis 72:125–133

    PubMed  Google Scholar 

  • Lavania M, Jadhav R, Turankar RP, Singh I, Nigam A, Sengupta U (2015) Genotyping of Mycobacterium leprae strains from a region of high endemic leprosy prevalence in India. Infect Genet Evol 36:256–261. https://doi.org/10.1016/j.meegid.2015.10.001

    Article  PubMed  Google Scholar 

  • Lee DJ, Li H, Ochoa MT et al (2010) Integrated pathways for neutrophil recruitment and inflammation in leprosy. J Infect Dis 201:558–569

    CAS  PubMed  Google Scholar 

  • Legendre DP, Muzny CA, Swiatto E (2012) Hansen’s disease (Leprosy): current and future pharmacotherapy and treatment of disease-related immunological reactions. Pharmacotherapy 32(1):27–37

    CAS  PubMed  Google Scholar 

  • Little D, Khanolkar-Young S, Coulthart A, Suneetha S, Lockwood DN (2001) Immunohistochemical analysis of cellular infiltrate and gamma interferon, interleukin-12 and inducible nitric oxide synthase expresiion in leprosy type 1 (reversal) reaction before and during preduisolone treatment. Infect Immun 69:3413–3417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lockwood DNJ (1996) The management of erythema nodosum leprosum:current and future options. Lepr Rev 67:253–259

    CAS  PubMed  Google Scholar 

  • Macfarlane RS, Reid R, Collander R (2000) Pathology illustrated, 5th edn. Churchill Livingstone, London

    Google Scholar 

  • Maeda S, Matsuoka M, Nakata N, Kai M, Maeda Y, Hashimoto K et al (2001) Multidrug resistant Mycobacterium leprae from patients with leprosy. Antimicrob Agents Chemother 45:3635–3639. https://doi.org/10.1128/AAC.45.12.3635-3639.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda Y, Gidoh M, Ishii N, Mukai C, Makino M (2003) Assessment of cell mediated immunogenicity of Mycobacterium leprae-derived anti-gens. Cell Immunol 222:69–77

    CAS  PubMed  Google Scholar 

  • Maeda Y, Mukai T, Spencer J, Makino M (2005) Identification of an immunomodulating agent from Mycobacterium leprae. Infect Immun 73:2744–2750. https://doi.org/10.1128/IAI.73.5.2744-2750.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahapatra S, Bhakta S, Ahamed J, Basu J (2000) Characterization of derivatives of the high-molecular-mass penicillin-binding protein (PBP) 1 of Mycobacterium leprae. Biochem J 350:75–80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mangtani P, Nguipdop-Djomo P, Keogh RH, Sterne JAC, Abubakar I, Smith PG et al (2018) The duration of protection of school-aged BCG vaccination in England: a population-based case-control study. Int J Epidemiol 47:193–201. https://doi.org/10.1093/ije/dyx141

    Article  PubMed  Google Scholar 

  • Marlowe SN, Hawksworth RA, Butlin CR, Nicholls PG, Lockwood DN (2004) Clinical outcomes in a randomized controlled study com-paring azathioprine and prednisolone versus prednisolone alone in the treatment of severe leprosy type 1 reactions in Nepal. Trans R Soc Trop Med Hyg 98:602–609

    CAS  PubMed  Google Scholar 

  • Masaki T, Qu J, Cholewa-Waclaw J, Burr K, Raaum R, Rambukkana A (2013) Reprogramming adult Schwann cells to stem cell-like cells by leprosy bacilli promotes dissemination of infection. Cell 152:51–67

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masaki T, Mcglinchey A, Cholewa-Waclaw JB, Qu T (2014) Innate immune response precedes Mycobacterium lapare -induced reprogramming of adult Schwann cells. Cell Reprogramm 16:9–17

    CAS  Google Scholar 

  • Massone C, Belachew WA, Schettini A (2015) Histopathology of the lepromatous skin biopsy. Clin Dermatol 33:38–45

    PubMed  Google Scholar 

  • Matsuoka M, Nomaguchi H, Yukitake H, Ohara N, Matsumoto S, Mise K et al (1997) Inhibition of multiplication of Mycobacterium leprae in mouse foot pads by immunization with ribosomal fraction and culture filtrate from Mycobacterium bovis BCG. Vaccine 15:1214–1217. https://doi.org/10.1016/s0264-410x(97)00018-2

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka M, Kashiwabara Y, Namisato M (2000) A Mycobacterium leprae isolate resistant to dapsone, rifampin, ofloxacin and sparfloxacin. Int J Lepr Other Mycobact Dis 68:452–455

    CAS  PubMed  Google Scholar 

  • Matsuoka M, Kashiwabara Y, Liangfen Z, Goto M, Kitajima S (2003) A second case of multidrug-resistant Mycobacterium leprae isolated from a Japanese patient with relapsed lepromatous leprosy. Int J Lepr Other Mycobact Dis 71:240–243. https://doi.org/10.1489/1544-581x(2003)71<240:ascomm>2.0.co;2

    Article  PubMed  Google Scholar 

  • Mattos KA, D’Avila H, Rodrigues LS, Oliveira VG, Sarno EN, Atella GC et al (2010) Lipid droplet formation in leprosy: Toll-like receptor-regulated organelles involved in eicosanoid formation and Mycobacterium leprae pathogenesis. J Leukoc Biol 87:371–384

    CAS  PubMed  Google Scholar 

  • Mattos KA, Lara FA, Oliveira VG, Rodrigues LS, D’Avila H, Melo RC et al (2011) Modulation of lipid droplets by Mycobacterium leprae in Schwann cells: a putative mechanism for host lipid acquisition and bacterial survival in phagosomes. Cell Microbiol 13:259–273

    CAS  PubMed  Google Scholar 

  • Mattos KA, Oliveira VC, Berrêdo-Pinho M, Amaral JJ et al (2014) Mycobacterium leprae intracellular survival relies on cholesterol accumulation in infected macrophages: a potential target for new drugs for leprosy treatment. Cell Microbiol 16:797–815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mège JL, Mehraj V, Capo C (2011) Macrophage polarization and bacterial infections. Curr Opin Infect Dis 24:230–234

    PubMed  Google Scholar 

  • Mills CD (2012) M1 and M2 macrophages: oracles of health and disease. Crit Rev Immunol 32:463–488

    CAS  PubMed  Google Scholar 

  • Misch EA, Macdonald M, Ranjit C, Sapkota BR, Wells RD, Siddiqui MR, Kaplan G, Hawn TR (2008) Human TLR1 deficiency is associated with impaired mycobacterial signaling and protection from leprosy re-versal reaction. PLoS Negl Trop Dis 2:e231

    PubMed  PubMed Central  Google Scholar 

  • Misch EA, Berrington WR, Vary JC, Hawn TR (2010) Leprosy and the human genome. Microbiol Mol Biol Rev 74(4):589–620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Modlin RL (1994) Th1-Th2 paradigm:insights from leprosy. J Invest Dermatol 102:828–832

    CAS  PubMed  Google Scholar 

  • Modlin RL, Hofman FM, Taylor CR, Rea TH (1982) In situ characterization of T-lymphocytes subsets in leprosy granulomas. (Letter). Int J Lepr 50:361–362

    CAS  Google Scholar 

  • Modlin RL, Mehra V, Jordan R, Bloom BR, Rea TH (1986) In situ and in vivo characterization of the cellular immune response in erythema nodosum leprosum. J Immunol 136:883–886

    CAS  PubMed  Google Scholar 

  • Modlin RL, Mehra V, Jordan R, Bloom BR, Rea TH (1986c) In situ and in vitro characterization of the cellular immune response in erythema nodosum leprosum. J Immunol 136:883–886

    CAS  PubMed  Google Scholar 

  • Modlin RL, Melancon-Kaplan J, Young SMM, Pirmez C, Kino H, Convit J, Rea TH, Bloom BR (1988) Learning from lesions: patterns of tissue inflammation in leprosy. Proc Natl Acad Sci U S A 85:1213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Modlin RL, Pirmez C, Hofman FM, Torigian V, Uyemura K, Rea TH, Bloom BR, Brenner MB (1989a) Lymphocytes bearing antigen-specific T-cell receptors accumulate in human infectious disease lesions. Nature 339:54

    Google Scholar 

  • Modlin RL, Melancon-Kaplan J, Young SMM, Pirmez C, Kino H, Convit J, Rea TH, Bloom BR (1989b) Learning from lesions. Nature 339:544–548

    CAS  PubMed  Google Scholar 

  • Moliva JI, Turner J, Torrelles JB (2015) Prospects in Mycobacterium bovis Bacille Calmette et Guérin (BCG) vaccine diversity and delivery: why does BCG fail to protect against tuberculosis? Vaccine 33:5035–5041. https://doi.org/10.1016/j.vaccine.2015.08.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montoya D, Cruz D, Teles RMB, Lee DJ, Ochoa MT, Krutzik SR et al (2009) Divergence of macrophage phagocytic and antimicrobial programs in leprosy. Cell Host Microbe 6:343–353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mosmann TR, Coffman RL (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7:145–173

    CAS  PubMed  Google Scholar 

  • Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. 1. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 146:2348–2357

    Google Scholar 

  • Moura DF, Mattos KA, Amadeu TP, Andrade PR, Sales JS, Schmitz V et al (2012) CD163 favors Mycobacterium leprae survival and persistence by promoting anti-inflammatory pathways in lepromatous macrophages. Eur J Immunol 42:2925–2936

    CAS  PubMed  Google Scholar 

  • Naito M, Matsuoka M, Ohara N, Nomaguchi H, Yamada T (1999) The antigen 85 complex vaccine against experimental Mycobacterium leprae infection in mice. Vaccine 18:795–798. https://doi.org/10.1016/s0264-410x(99)00327-8

    Article  CAS  PubMed  Google Scholar 

  • Narayanan RB, Bhutani LK, Sharma AK, Nath I (1983) T-cell subsets in leprosy lesions in situ characterization using monoclonal antibodies. Clin Exp Immunol 51:421–429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ng V, Zanazzi G, Timpl R, Talts JF, Salzer JL, Brennan PJ, Rambukkana A (2000) Role of the cell wall phenolic glycolipid-1 in the peripheral nerve predilection of Mycobacterium leprae. Cell 103:511–524

    CAS  PubMed  Google Scholar 

  • Ngamying M, Sawanpanyalert P, Butraporn R, Nikasri J, Cho SN, Levy L et al (2003) Effect of vaccination with refined components of the organism on infection of mice with Mycobacterium leprae. Infect Immun 71:1596–1598. https://doi.org/10.1128/IAI.71.3.1596-1598.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nigou J, Zelle-Rieser C, Gilleron M, Thurnher M, Puzo G (2001) Mannosylated lipoarabinomannans inhibit IL-12 production by human den-dritic cells: evidence for a negative signal delivered through the mannose receptor. J Immunol 166:7477–8485

    CAS  PubMed  Google Scholar 

  • Noordeen SK (1994) The epidemiology of leprosy. In: Hastings RC (ed) Leprosy, 2nd edn. Churchill-Livingstone, Edinburgh, pp 29–48

    Google Scholar 

  • Ochoa MT, Stenger S, Sieling PA, Thoma-Uszynski S, Sabet S, Cho S, Krensky AM, Rollinghoff M, Nunes Sarno E, Burdick AE, Rea TH, Modlin RL (2001) T-cell release of granulysin contributes to host defense in leprosy. Nat Med 7:174–179

    CAS  PubMed  Google Scholar 

  • Ohara N, Matsuoka M, Nomaguchi H, Naito M, Yamada T (2000) Inhibition of multiplication of Mycobacterium leprae in mouse foot pads by recombinant Bacillus Catmette-Guérin (BCG). Vaccine 18:1294–1297. https://doi.org/10.1016/s0264-410x(99)00420-x

    Article  CAS  PubMed  Google Scholar 

  • Oliveira Fulco T, Andrade PR, de Mattos Barbosa MG, Pinto TG, Ferreira PF, Ferreira H et al (2014) Effect of apoptotic cell recognition on macrophage polarization and mycobacterial persistence. Infect Immun 82:3968–3978

    PubMed  PubMed Central  Google Scholar 

  • Oliveira RB, Moraes MO, Oliveira EB, Sarno EN, Nery JA, Sampaio EP (1999) Neutrophils isolated from leprosy patients release TNF-α and exhibit accelerated apoptosis in vitro. J Leukoc Biol 65:364–371

    CAS  PubMed  Google Scholar 

  • Oliveira RB, Ochoa MT, Sieling PA, Rea TH, Rambukkana A, Sarno EN, Modlin RL (2003) Expression of Toll-like receptor 2 on human Schwann cells: a mechanism of nerve damage in leprosy. Infect Immun 71:1427–1433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira AL, Antunes SL, Teles RM et al (2010) Schwann cells producing matrix metalloproteinases under Mycobacterium leprae stimulation may play a role in the outcome of leprous neuropathy. J Neuropathol Exp Neurol 69:27–39

    CAS  PubMed  Google Scholar 

  • Pandey AK, Sassetti CM (2008) Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci U S A 105:4376–4380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pedley JC (1973) The nasal mucus in leprosy. Lepr Rev 44(1):33–35

    CAS  PubMed  Google Scholar 

  • Pereira RM, Calegari-Silva TC, Hernandez MO et al (2005) Mycobacterium leprae induces NF-κB dependent transcription repression in human Schwann cells. Biochem Biophys Res Commun 335:20–26

    CAS  PubMed  Google Scholar 

  • Pereira JA, Lebrun-Julien F, Suter U (2012) Molecular mechanisms regulating myelination in the peripheral nervous system. Trends Neurosci 35:123–134

    CAS  PubMed  Google Scholar 

  • Peters ES, Eshiet AL (2002) Male-female (sex) differences in leprosy patients in south eastern Nigeria: females presents late for diagnosis and treatment and have higher rate of deformity. Lepr Rev 73:262–267

    CAS  PubMed  Google Scholar 

  • Pocaterra L, Jain S, Reddy R, Muzaffarullah S, Torres O, Suneetha S, Lockwood DN (2006) Clinical course of erythema nodosum leprosum: an 11 year chohort study in Hyderabad, India. Am J Trop Med Hyg 74:868–879

    PubMed  Google Scholar 

  • Polycarpou A, Walker SL, Lockwood DNJ (2013) New findings in the pathogenesis of leprosy and implications for the management of leprosy. Curr Opin Infect Dis 26:413–419

    CAS  PubMed  Google Scholar 

  • Prabhakaran K, Harris EB, Randhawa B (2000) Regulation by protein kinase of phagocytosis of Mycobacterium leprae by macrophages. J Med Microbiol 49:339–342

    CAS  PubMed  Google Scholar 

  • Quaresma JAS, de Almeida FA, de Souza Aarao TL, de Miranda Araujo Soares LP, Nunes Magno IM, Fuzii HT et al (2012) Transforming growth factor β and apoptosis in leprosy skin lesions: possible relationship with the control of the tissue immune response in the Mycobacterium leprae infection. Microbes Infect 14:696–701

    Google Scholar 

  • Rajalingam R, Singal DP, Mehra NK (1997) Transporter associated with antigen-processing (TAP) genes and susceptibility to tuberculoid leprosy and pulmonary tuberculosis. Tissue Antigens 49:168–172

    CAS  PubMed  Google Scholar 

  • Rambukkana A (2010) Usage of signaling in neurodegeneration and regeneration of peripheral nerves by leprosy bacteria. Prog Neurobiol 91:102–107

    CAS  PubMed  Google Scholar 

  • Rambukkana A, Salzer JL, Yurchenco PD, Tuomanen EI (1997) Neural targeting of Mycobacterium leprae mediated by the G domain of the laminin-α2 chain. Cell 88:811–821

    CAS  PubMed  Google Scholar 

  • Rambukkana A, Yamada H, Zanazzi G et al (1998) Role of α-dystroglycan as a Schwann cell receptor for Mycobacterium leprae. Science 282:2076–2079

    CAS  PubMed  Google Scholar 

  • Rambukkana A, Zanazzi G, Tapinos N, Salzer JL (2002) Contact-dependent demyelination by Mycobacterium leprae in the absence of immune cells. Science 296:927–931

    CAS  PubMed  Google Scholar 

  • Rees RJW (1988) Animal models in leprosy. Br Med Bull 44:650–664. https://doi.org/10.1093/oxfordjournals.bmb.a072274

    Article  CAS  PubMed  Google Scholar 

  • Rees RJW, McDougall AC (1977) Airborne infection with Mycobacterium leprae in mice. J Med Microbiol 10(1):63–68

    CAS  PubMed  Google Scholar 

  • Rees RJW, Waters MFR, Weddell AGM, Palmer E (1967) Experimental lepromatous leprosy. Nature 215:599–602. https://doi.org/10.1038/215599a0

    Article  CAS  PubMed  Google Scholar 

  • Report of the Scientific Working Group on leprosy. Geneva 2002: TDR/SWG/02

    Google Scholar 

  • Richey DP, Brown GM (1969) The biosynthesis of folic acid. IX. Purification and properties of the enzymes required for the formation of dihydropteroic acid. J Biol Chem 244:1582–1592

    CAS  PubMed  Google Scholar 

  • Ridley DS (1974) Histological classification and the immunological spectrum of leprosy. Bull World Health Organ 51:451–465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ridley OS, Jopling WH (1966) A classification of leprosy according to immunity-a five group system. Int J Lepr 34:255–273

    CAS  Google Scholar 

  • Ridley DS, Radia KB (1981) Histological course of reactions in borderline leprosy and their outcome. Int J Lepr 49:383–392

    CAS  Google Scholar 

  • Roche PW, Neupane KD, Failbus SS, Butlin CR (2000) Dapsone drug resistance in the MDT era. Int J Lepr Other Mycobact Dis 68:323–325

    CAS  PubMed  Google Scholar 

  • Roche PW, Neupane KD, Failbus SS, Kamath A, Britton WJ (2001) Vaccination with DNA of the Mycobacterium tuberculosis 85B antigen protects mouse foot pad against infection with M. leprae. Int J Lepr Other Mycobact Dis 69:93–98

    CAS  PubMed  Google Scholar 

  • Rodrigues LC, Kerr-Pontes LRS, Frietas MVC, Barreto ML (2007) Long lasting BCG protection against leprosy. Vaccine 25:6842–6844. https://doi.org/10.1016/j.vaccine.2007.07.032

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Espinosa O, Løvik M (2001) Mycobacterium leprae and Mycobacterium lepraemurium infections in domestic and wild animals. OIE Revue Scientifique et Technique 20(1):219–251

    CAS  Google Scholar 

  • Sakurai I, Skinsnes OK (1970) Lipids in leprosy. 2. Histochemistry of lipids in human leprosy. Int J Lepr Other Mycobact Dis 38:389–403

    CAS  PubMed  Google Scholar 

  • Scollard DM (2008) The biology of nerve injury in leprosy. Lepr Rev 79(3):242–253

    PubMed  Google Scholar 

  • Scollard DM (2016) Pathogenesis and pathology of leprosy. In: Scollard DM, Gillis TP, editors, International textbook of leprosy. American Leprosy Mission

    Google Scholar 

  • Scollard D, Adam LB, Gillis TP, Krahenbuhl JL, Truman RW, Williams DL (2006a) The continuing challenges of leprosy. Clin Microbiol Rev 19:338–381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scollard DM, Adams LB, Gillis TP, Krahenbuhi JL, Truman RW, Willims DL (2006b) The continuing challenges of leprosy. Clin Dermatol 33(1):46–54

    Google Scholar 

  • Scollard DM, Adams LB, Gillis TP, Krahenbuhl JL, Truman RW, Williams DL (2006c) The continuing challenges of leprosy. Clin Microbiol Rev 19:338–381. https://doi.org/10.1128/CMR.19.2.338-381.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seydel JK, Richter M, Wempe E (1980) Mechanism of action of the folate blocker diaminodiphenylsulfone (dapsone, DDS) studied in E. coli cell-free enzyme extracts in comparison to sulfonamides (SA). Int J Lepr Other Mycobact Dis 48:18–29

    CAS  PubMed  Google Scholar 

  • Sharma R, Lahiri R, Scollard DM, Pena M, Williams DL, Adams LB et al (2013) The armadillo: a model for the neuropathy of leprosy and potentially other neurodegenerative diseases. DMM Dis Model Mech 6:19–24. https://doi.org/10.1242/dmm.010215

    Article  CAS  PubMed  Google Scholar 

  • Shaw MA, Donalson IA, Collins A, Peacock CS, Lins-Laison Z, Shaw J, Ramos F, Silveira F, Blackwell JM (2001) Association and linkage of leprosy phenotypes with HLA class II and tumour necrosis factor genes. Genes Immun 2:196–204

    CAS  PubMed  Google Scholar 

  • Shepard CC (1960a) The experimental disease that follows the injection of human leprosy bacilli into foot-pads of mice. J Exp Med 112:445–454. https://doi.org/10.1084/jem.112.3.445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shepard CC (1960b) The experimental disease that follows the injection ofhuman leprosy bacilli into footpads of mice. J Exp Med 112:445–454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shepard CC, van Landingham RM, Walker LL, Ye SZ (1983) Comparison of the immunogenicity of vaccines prepared from viable Mycobacterium bovis BCG, heat-killed Mycobacterium leprae, and a mixture of the two for normal and M. leprae-tolerant mice. Infect Immun 40:1096–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sibley LD, Krahenbuhl JL (1987) Mycobacterium leprae-burdened macrophages are refractory to activation by γ interferon. Infect Immun 55:446–450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sibley LD, Franzblau SG, Krahenbuhl JL (1987) Intracellular fate of Mycobacterium leprae in normal and activated mouse macrophages. Infect Immun 55:680–685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sielin PA, Modlin RL (1992) T cell and cytokine patterns in leprosy skin lesions. Springer Semin Immunopathol 13:413–426

    Google Scholar 

  • Sieling PA, Modlin RL (1994) Cytokine patterns at the site of mycobacterial infection. Immunopharmacology 191:378–387

    CAS  Google Scholar 

  • Sieling PA, Jullien D, Dahlem M, Tedder TF, Rea TH, Modlin RL, Procelli SA (1999) CD1 expression by dendritic cells in human leprosy lesions: correlation with effective host immunity. J Immunol 162:1851

    CAS  PubMed  Google Scholar 

  • Singh NB, Lowe AC, Rees RJ, Colston MJ (1989) Vaccination of mice against Mycobacterium leprae infection. Infect Immun 57:653–655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh NB, Srivastava A, Gupta HP, Kumar A, Srivastava S (1991) Induction of lepromin positivity in monkeys by a candidate antileprosy vaccine: Mycobacterium habana. Int J Lepr Other Mycobact Dis 59:317–320

    CAS  PubMed  Google Scholar 

  • Skinsnes OK (1970) Leprosy and the concept of granuloma. Int J Lepr 38(2):202–206

    Google Scholar 

  • Soilleux EJ, Morris LS, Leslie G et al (2002) Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J Leukoc Biol 71:445–457

    CAS  PubMed  Google Scholar 

  • Soler P, Bernaudin JF (1993) Physiology of granulomas. Rev Pneumol Clin 49:257–261

    CAS  PubMed  Google Scholar 

  • Sousa JR, Sousa RP, Aarão TLS, Dias LB Jr, Carneiro FR, Fuzii HT et al (2016) In situ expression of M2 macrophage subpopulation in leprosy skin lesions. Acta Trop 157:108–114

    PubMed  Google Scholar 

  • Spierings E, de Boer T, Wieles B, Adams LB, Marani E, Ottenhoff TH (2001) Mycobacterium leprae-specific, HLA class II-restricted killing of human Schwann cells by CD4_ Th1 cells: a novel immunopathogenic mechanism of nerve damage in leprosy. J Immunol 166:5883

    CAS  PubMed  Google Scholar 

  • Stoner GL (1979) Importance of the neural predilection of Mycobacterium leprae in leprosy. Lancet 2:994–996

    CAS  PubMed  Google Scholar 

  • Suzuki K, Nakata N, Bang PD, Ishii N, Makino M (2006) High level expression of pseudogenes in Mycobacterium leprae. FEMS Microbiol Lett 259:208–214

    CAS  PubMed  Google Scholar 

  • Tanigawa K, Suzuki K, Nakamura K, Akama T, Kawashima A, Wu H et al (2008) Expression of adipose differentiation-related protein (ADRP) and perilipin in macrophages infected with Mycobacterium leprae. FEMS Microbiol Lett 289:72–79; Mattos et al., 2010

    CAS  PubMed  Google Scholar 

  • Tanigawa K, Degang Y, Kawashima A, Akama T, Yoshihara A, Ishido Y et al (2012) Essential role of hormone-sensitive lipase (HSL) in the maintenance of lipid storage in Mycobacterium leprae-infected macrophages. Microb Pathog 52:285–291

    CAS  PubMed  Google Scholar 

  • Tapinos N, Ohnishi M, Rambukkana A (2006) ErbB2 receptor tyrosine kinase signaling mediates early demyelination induced by leprosy bacilli. Nat Med 12:961–966

    CAS  PubMed  Google Scholar 

  • Tapping RI, Omueti KO, Johnson CM (2007) Genetic polymorphisms within the human Toll-like receptor 2 subfamily. Biochem Soc Trans 35:1445–1448

    CAS  PubMed  Google Scholar 

  • Teles RM, Antunes SL, Jardim MR et al (2007) Expression of metalloproteinases (MMP-2, MMP-9, and TACE) and TNF-α in the nerves of leprosy patients. J Peripher Nerv Syst 12:195–204

    CAS  PubMed  Google Scholar 

  • Thangaraj HS, Lamb FI, Davis EO, Jenner PJ, Jeyakumar LH, Colston MJ (1990) Identification, sequencing, and expression of Mycobacterium leprae superoxide dismutase, a major antigen. Infect Immun 58:1937–1942

    CAS  PubMed  PubMed Central  Google Scholar 

  • Truman R, Sanchez R (1993) Armadillos: models for leprosy. Lab Anim (NY) 22:28–32

    Google Scholar 

  • Truman RW, Andrews PK, Robbins NY, Adams LB, Krahenbuhl JL, Gillis TP (2008) Enumeration of Mycobacterium leprae using real-time PCR. PLoS Negl Trop Dis 2:e328. https://doi.org/10.1371/journal.pntd.0000328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truman RW, Ebenezer GJ, Pena MT, Sharma R, Balamayooran G, Gillingwater TH et al (2014) The armadillo as a model for peripheral neuropathy in leprosy. ILAR J 54:304–314. https://doi.org/10.1093/ilar/ilt050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truoc LV, Ly HM, Thuy NK, Trach DD, Stanford CA, Stanford JL (2001) Vaccination against leprosy at Ben San Leprosy Centre, Ho Chi Minh City, Vietnam. Vaccine 19:3451–3458. https://doi.org/10.1016/s0264-410x(01)00052-4

    Article  CAS  PubMed  Google Scholar 

  • van Brakel WH, Nicholls PG, Das L, Barkataki P, Suneetha SK, Jadhav RS, Madali P, Lockwood DN, Wilder-Smith E, Desikan KV (2005) The INFIR cohort study: investigating prediction, detection, and pathogenesis of neuropathy and reactions in leprosy. Methods and baseline results of a cohort of multibacillary leprosy patients in North India. Lepr Rev 76:14–34

    PubMed  Google Scholar 

  • van der Meer-Janssen YP, van Galen J, Batenburg JJ, Helms JB (2010) Lipids in host–pathogen interactions: pathogens exploit the complexity of the host cell lipidome. Prog Lipid Res 49:1–26

    PubMed  Google Scholar 

  • Verreck FAW, de Boer T, Langenberg DML, Hoeve MA, Kramer M, Vaisberg E et al (2004) Human IL-23-producingtype 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to(myco)bacteria. Proc Natl Acad Sci U S A 101:4560–4565

    CAS  PubMed  PubMed Central  Google Scholar 

  • Virchow R (1863) Die krankhaftenGeschwülste. August Hirschwald. Berlin, Germany. 208.; Scollard, D.M., Adams, L.B., Gillis, T.P., Krahenbuhl, J.L., Truman, R.W., and Williams, D.L. (2006) The continuing challenges of leprosy. Clin Microbiol Rev 19:338–381

    Google Scholar 

  • Vissa VD, Brennan PJ (2001) The genome of Mycobacterium leprae: a minimal mycobacterial gene set. Genome Biol 2:1023

    Google Scholar 

  • Walker SL, Lockwood DNJ (2007) Leprosy. Clin Dermatol 25:165–172

    PubMed  Google Scholar 

  • Wenk MR (2006) Lipidomics of host–pathogen interactions. FEBS Lett 580:5541–5551

    CAS  PubMed  Google Scholar 

  • Werneck LC, Teive HAG, Scola RH (1999) Muscle involvement in leprosy: study of the anterior tibial muscle in 40 patients. Arq Neuropsiquiatr 57(3B):723–734. https://doi.org/10.1590/S0004-282X1999000500001

    Article  CAS  PubMed  Google Scholar 

  • White C, Franco-Paredes C (2015) Leprosy in 21st century. Clin Microbiol Rev 28:80–94

    CAS  PubMed  PubMed Central  Google Scholar 

  • WHO Expert committee on leprosy. Sixth report. Geneva: World Health Organization. Tech Rep Ser. 1998;874

    Google Scholar 

  • William HW et al (2014) Long-term survival and virulence of Mycobacterium leprae in amoebal cysts. PLoS Negl Trop Dis 8(12):1

    Google Scholar 

  • Williams DL, Gills TP (2012) Drug-resistant leprosy: monitoring and current status. Lepr Rev 83:269–281

    PubMed  Google Scholar 

  • Williams DL, Spring L, Harris E, Roche P, Gillis TP (2000) Dihydropteroate synthase of Mycobacterium leprae and dapsone resistance. Antimicrob Agents Chemother 44:1530–1537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams DL, Torrero M, Wheeler PR, Truman RW, Yoder M, Morrison N, Bishai WR, and. Gillis TP. (2004) Biological implications of Mycobacterium leprae gene expression during infection. J Mol Microbiol Biotechnol 8:58–72

    CAS  PubMed  Google Scholar 

  • Weekly epidemiological record, 2016. World Health Organisation 35(91):405–420

    Google Scholar 

  • World Health Organization, R. O. for S.-E. A (2011a) Meeting on sentinel surveillance for drug resistance in leprosy. In (New Delhi PP—New Delhi: WHO Regional Office for South-East Asia)

    Google Scholar 

  • World Health Organization (2011b) Surveillance of drug resistance in leprosy: 2010. Wkly Epidemiol Rec 86:237–240

    Google Scholar 

  • World Health Organization, 2012. Leprosy; fact sheet no.101. World Health Organization, Geneva

    Google Scholar 

  • World Health Organization, 2016: Weekly Epidemiological record. No. 35(91);405–420

    Google Scholar 

  • World Health Organization Study Group. Chemotherapy of leprosy for control programmes. WHO Technical Report Series, 1982; 675

    Google Scholar 

  • Wurfel MM, Gordon AC, Holden TD, Radella F, Strout J et al (2008) Toll-like receptor 1 polymorphisms affect innate immune responses and outcomes in sepsis. Am J Respir Crit Care Med 178(7):710–720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamura M, Wang X-H, Ohmen JD et al (1992) Cytokine patterns of immunological mediated tissue damage. J Immunol 149:1470–1475

    CAS  PubMed  Google Scholar 

  • Yang D, Shui T, Miranda JW, Gilson DJ, Song Z, Chen J, Shi C, Zhu J, Yang J, Jing Z (2016) Mycobacterium leprae-infected macrophages preferentially primed regulatory T cell responses and was associated with lepromatous leprosy. PLoS Negl Trop Dis 10(1):e0004335

    PubMed  PubMed Central  Google Scholar 

  • Zhang FR, Huang W, Chen SM, Sun LD et al (2009) Genome-wide association study of leprosy. N Engl J Med 361:2609–2618

    CAS  PubMed  Google Scholar 

  • Zhou W, Zhang F, Aune TM (2003) Either IL-2 or IL-12 is sufficient to direct Th1 differentiation by nonobese diabetic T cells. J Immunol 170:735–740

    CAS  PubMed  Google Scholar 

  • Zodpey SP, Bansod BS, Shrikhande SN, Maldhure BR, Kulkarni SW (1999) Protective effect of Bacillus Calmette Guerin (BCG) against leprosy: a population-based case-control study in Nagpur, India. Lepr Rev 70:287–294. https://doi.org/10.5935/0305-7518.19990032

    Article  CAS  PubMed  Google Scholar 

  • Zodpey SP, Ambadekar NN, Thakur A (2005) Effectiveness of Bacillus Calmette Guerin (BCG) vaccination in the prevention of leprosy: a population-based case-control study in Yavatmal District, India. Public Health 119:209–216. https://doi.org/10.1016/j.puhe.2004.04.007

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yasmin, H., Varghese, P.M., Bhakta, S., Kishore, U. (2021). Pathogenesis and Host Immune Response in Leprosy. In: Kishore, U. (eds) Microbial Pathogenesis. Advances in Experimental Medicine and Biology, vol 1313. Springer, Cham. https://doi.org/10.1007/978-3-030-67452-6_8

Download citation

Publish with us

Policies and ethics