Skip to main content

Analysis of Land-Use/Land-Cover Changes in a Livestock Landscape Dominated by Silvopastoral Systems

  • Chapter
  • First Online:
Exploring and Optimizing Agricultural Landscapes

Part of the book series: Innovations in Landscape Research ((ILR))

Abstract

Livestock landscapes are a fragmented matrix, involving many different land uses with different tree cover and ecological benefits. The present study gives an in-depth introduction in silvopastoral systems and their variations and provides a remote sensing process chain for monitoring land-use/land-cover changes in traditional silvopastoral systems (TSPS), based on free open source software and data components and the state of the art in monitoring land-use/land-cover changes. In the last two decades, before Landsat images were available as open data, developing countries could not afford monitoring through remote sensing, because of the high cost of acquiring satellite imagery and commercial image processing software. Landsat time series, nowadays, allow the characterization of changes in the vegetation across large areas over time. Landsat was at the forefront of open data for earth observation and the program consequently continues its open data policy; a newer program with an open data policy, the Sentinel program of the European Union, follows in Landsat’s footsteps and makes remote sensing feasible for institutions in developing countries. Often starting points for researchers to analyze silvopastoral systems lack; a secondary goal of this chapter is to fill this gap and offering recommendations on which remote sensing techniques and methods could be applied successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anjos D, Lu, Dutra L, Sant’Anna S (2016) Change detection techniques using multisensor data. In: Thenkabail PS (ed) Remote sensing handbook—Data, characterization, classification and accuracies, pp 377–397. CRC Press

    Google Scholar 

  • Andrade H, Ibrahim M (2003) ¿Cómo monitorear el secuestro de carbono en los sistemas silvopastoriles? Agroforestería en las Américas 10(39–40):109–116

    Google Scholar 

  • Betancourt K, Ibrahim M, Harvey C, Vargas B (2003) Efecto de la cobertura arbórea sobre el comportamiento animal en fincas ganaderas de doble propósito en Matiguás, Matagalpa, Nicaragua. Agroforestería en las Américas 10(39–40):47–51

    Google Scholar 

  • Bernstein L, Bosch P, Canziani O, Chen Z, Christ R, Riahi K (2008) IPCC, 2007: climate change 2007: synthesis report. IPCC, Geneva ISBN 2-9169-122-4

    Google Scholar 

  • Beer J, Harvey C, Ibrahim M, Harmand JM, Somarriba E, Jiménez F (2003) Servicios ambientales de los sistemas agroforestales. Agroforestería en las Américas 10(37–38):80–87

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  • Cárdenas A, Moliner A, Hontoria C, Schernthanner H (2018) Analysis of land-use/land-cover changes in a livestock landscape dominated by traditional silvopastoral systems: a methodological approach. Int J Remote Sens 39(14):4684–4698

    Article  Google Scholar 

  • Cárdenas A, Moliner A, Hontoria C, Schernthanner H (2016) Free Open Source (FOS) Multi-scale silvo-pastoral systems monitoring. World Congress Silvo-Pastoral Systems 2016

    Google Scholar 

  • Chacón León M (2003) Cobertura arbórea y cercas vivas en un paisaje fragmentado Río Frío, Costa RicaTree cover and livefences in a fragmented landscape in Rio Frio, Costa Rica(No. Thesis C431cob). CATIE, Turrialba (Costa Rica)

    Google Scholar 

  • Chaturvedi RK, Raghubanshi AS, Singh JS (2011) Carbon density and accumulation in woody species of tropical dry forest in India. Forest Ecol Manag 262(8):1576–1588

    Article  Google Scholar 

  • Chazdon RL (2008) Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320(5882): 1458–1460

    Google Scholar 

  • Chazdon RL, Harvey CA, Komar O, Griffith DM, Ferguson BG, Martínez-Ramos M, Philpott SM (2009) Beyond reserves: a research agenda for conserving biodiversity in human-modified tropical landscapes. Biotropica 41(2):142–153

    Article  Google Scholar 

  • Chazdon RL, Guariguata MR (2016) Natural regeneration as a tool for largescale forest restoration in the tropics: prospects and challenges. Biotropica 48(6):716–730

    Article  Google Scholar 

  • Congedo L (2014) Land cover classification of cropland: a tutorial using the semi-automatic classification plugin for QGIS

    Google Scholar 

  • Cubbage F, Balmelli G, Bussoni A, Noellemeyer E, Pachas AN, Fassola H, de Silva ML (2012) Comparing silvopastoral systems and prospects in eight regions of the world. Agrofor Syst 86(3):303–314

    Article  Google Scholar 

  • Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263(5144):185–190

    Article  CAS  PubMed  Google Scholar 

  • Ellis EC, Klein Goldewijk K, Siebert S, Lightman D, Ramankutty N (2010) Anthropogenic transformation of the biomes, 1700 to 2000. Glob Ecol Biogeogr 19(5):589–606

    Google Scholar 

  • Forman RTT (1995) Land Mosaics- the ecology of landscape and regions. Cambridge, UK. 632

    Google Scholar 

  • Forman RTT, Godron M (1986) Landscape ecology. John Wiley, New York, p 620

    Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Balzer C (2011) Solutions for a cultivated planet. Nature 478(7369):337

    Article  CAS  PubMed  Google Scholar 

  • Feng Q, Liu J, Gong J (2015) UAV remote sensing for urban vegetation mapping using random forest and texture analysis. Remote Sens 7(1):1074–1094

    Article  Google Scholar 

  • Gardner CM, Laryea KB, Unger PW (1999) Soil physical constraints to plant growth and crop production. Land and Water Development Division, Food and Agriculture Organization, 96

    Google Scholar 

  • Gobbi JA (2001) Evaluación socioeconómica. Proyecto Regional Integrated Silvopastoral Approaches to Ecosystems Management. Turrialba, CR: GEF-CATIE, 200

    Google Scholar 

  • Gordon AM, Newman SM, Coleman B (Eds) (2018) Temperate agroforestry systems. CABI, 273

    Google Scholar 

  • Guo L, Chehata N, Mallet C, Boukir S (2011) Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests. ISPRS J Photogramm Remote Sens 66(1):56–66

    Article  Google Scholar 

  • Hansen MC, DeFries RS, Townshend JR, Sohlberg R (2000) Global land cover classification at 1 km spatial resolution using a classification tree approach. Int J Remote Sens 21(6–7):1331–1364

    Article  Google Scholar 

  • Harvey CA, Medina A, Sánchez DM, Vílchez S, Hernández B, Saenz JC, Sinclair FL (2006) Patterns of animal diversity in different forms of tree cover in agricultural landscapes. Ecol Appl 16(5):1986–1999

    Article  PubMed  Google Scholar 

  • Harvey CA, Komar O, Chazdon R, Ferguson BG, Finegan B, Griffith DM, Van Breugel M (2008) Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot. Conserv Biol 22(1):8–15

    Article  PubMed  Google Scholar 

  • Harvey CA, Haber WA, Mejias F, Solano R (1998) Remnant trees in Costa Rican pastures: tools for conservation? Agrofor Today 10(3):7–9

    Google Scholar 

  • Hassler SK, Zimmermann B, van Breugel M, Hall JS, Elsenbeer H (2011) Recovery of saturated hydraulic conductivity under secondary succession on former pasture in the humid tropics. Forest Ecol Manag 261(10):1634–1642

    Article  Google Scholar 

  • Hecht SB (2014) Forests lost and found in tropical Latin America: the woodland ‘green revolution’. J Peasant Stud 41(5):877–909

    Article  Google Scholar 

  • Hobbs RJ (1993) Dynamics of weed invasion: implications for control. In Proceedings I of the 10th Australian Weeds Conference and 14th Asian Pacific Weed Science Society Conference, Brisbane, Australia, 6-10 September, 1993, pp. 461–465. Queensland Weed Society

    Google Scholar 

  • Howlett DS, Mosquera-Losada MR, Nair PK, Nair VD, Rigueiro-Rodríguez A (2011) Soil carbon storage in silvopastoral systems and a treeless pasture in northwestern Spain. J Environ Qual 40(3):825–832

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim M, Harvey CA (2003) Diseño y manejo de la cobertura arbórea en fincas ganaderas (10):39–40

    Google Scholar 

  • Ibrahim M, Camero A, Camargo JC, Andrade HJ (1999) Sistemas silvopastoriles en América Central: experiencias de CATIE. In Congreso Latinoamericano sobre Sistemas Agroforestales para la Producción Agrícola. Fundación CIPAV, Cali

    Google Scholar 

  • Ibrahim MA, Joenje M, Mannetje L, Jansen HGP, Nieuwenhuyse A, Abarca, S., ... & García J (1996) Aspectos económicos de la tecnología de pasturas mejoradas y sistemas silvopastoriles en la Zona Atlántica de Costa Rica. In 10. Congreso Nacional Agronómico y de Recursos Naturales-3. Congreso Nacional de Fitopatología-2. Congreso Nacional de Suelos8-12 Jul 1996San José (Costa Rica) (No. 630.97286 C749p 1996). Asociación Costarricense de la Ciencia del Suelo, San José (Costa Rica) Colegio de Ingenieros Agrónomos, San José (Costa Rica) Asociación Costarricense de Fitopatólogos, San José (Costa Rica)

    Google Scholar 

  • Iglhaut J, Cabo C, Puliti S, Piermattei L, O’Connor J, Rosette J (2019) Structure from motion photogrammetry in forestry: A review. Curr Forest Rep 5(3):155–168

    Article  Google Scholar 

  • Jensen JR (2009) Remote sensing of the environment: an earth resource perspective 2/e. Pearson Education India, 541

    Google Scholar 

  • Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76(1):1–10

    Article  Google Scholar 

  • Kattan GH, Alvarez-López H (1996) Preservation and management of biodiversity in fragmented landscapes in the Colombian Andes. Forest patches in tropical landscapes, 3–18

    Google Scholar 

  • Kanninen M (2000) Secuestro de carbono en los bosques: El papel de los bosques en el ciclo global de carbono. In: Pomareda C, Steinfeld H (Eds) Intensificación de la Ganadería en Centroamérica: Beneficios Económicos y Ambientales, pp 137–149

    Google Scholar 

  • Kanninen M, Mery G (2012) Carbon sinks in different forest ecosystems in Latin America. World Forests, Markets and Policies 3:68

    Google Scholar 

  • Keranen K, Kolvoord R (2008). Making spatial decisions using GIS (Vol 4). ESRI, Inc, 188

    Google Scholar 

  • Lawrence D (2004) Erosion of tree diversity during 200 years of shifting cultivation in Bornean rain forest. Ecol Appl 14(6):1855–1869

    Article  Google Scholar 

  • Lawrence RL, Wood SD, Sheley RL (2006) Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest). Remote Sens Environ 100(3):356–362

    Article  Google Scholar 

  • Le Quéré C, Andres RJ, Boden T, Conway T, Houghton RA, House JI, Andrew RM (2012) The global carbon budget 1959–2011. Earth Syst Sci Data Discuss 5(2):1107–1157

    Google Scholar 

  • Leutner B, Horning N, Schwalb-Willmann J, Hijmans R-J (2018) Rstoolbox. R package version 0.2.1. https://github.com/bleutner/RStoolbox

  • Lillesand T, Kiefer RW, Chipman J (2014) Remote sensing and image interpretation. John Wiley & Sons

    Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by randomForest. R news 2(3):18–22

    Google Scholar 

  • Lugo AE (2009) The emerging era of novel tropical forests. Biotropica 41(5):589–591

    Article  Google Scholar 

  • Montagnini F, Nair PKR (2004) Carbon sequestration: an underexploited environmental benefit of agroforestry systems. New vistas in agroforestry. Springer, Dordrecht, pp 281–295

    Chapter  Google Scholar 

  • Montagnini F, Ibrahim M, Murgueitio E (2013) Silvopastoral systems and climate change mitigation in Latin America. Bois et forêts des tropiques, 316(2), 3–16

    Google Scholar 

  • Mortelliti A, Amori G, Boitani L (2010) The role of habitat quality in fragmented landscapes: a conceptual overview and prospectus for future research. Oecologia 163(2):535–547

    Article  PubMed  Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10(2):58–62

    Article  CAS  PubMed  Google Scholar 

  • Murgueitio E, Calle Z, Uribe F, Calle A, Solorio B (2011) Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For Ecol Manag 261(10):1654–1663

    Article  Google Scholar 

  • Narine LL, Popescu S, Neuenschwander A, Zhou T, Srinivasan S, Harbeck K (2019) Estimating aboveground biomass and forest canopy cover with simulated ICESat-2 data. Remote Sens Environ 224:1–11

    Article  Google Scholar 

  • OpenTopography (2019) TEAM lidar data over La Selva, Costa Rica 2009, http://opentopo.sdsc.edu/dataspace/dataset?opentopoID=OTDS.022019.32616.1

  • Pagiola S, Arcenas A, Platais G (2005) Can payments for environmental services help reduce poverty? An exploration of the issues and the evidence to date from Latin America. World Dev 33(2):237–253

    Article  Google Scholar 

  • Pal M (2005) Random forest classifier for remote sensing classification. Int J Remote Sens 26(1):217–222

    Article  Google Scholar 

  • Rodriguez-Galiano VF, Ghimire B, Rogan J, Chica-Olmo M, Rigol-Sanchez JP (2012) An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J Photogramm Remote Sens 67:93–104

    Article  Google Scholar 

  • San Miguel Ayanz A (2005) Mediterranean European silvopastoral systems. Silvopastoralism and sustainable land management. CABI Publishing, Wallingford, UK, pp 36–40

    Google Scholar 

  • Schroth G, Harvey CA, da Fonseca GA, Gascon C, Vasconcelos HL, Izac AMN (Eds.) (2004) Agroforestry and biodiversity conservation in tropical landscapes. Island Press

    Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Miller HL (2007) Climate change: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, 996

    Google Scholar 

  • Solomon S, Plattner GK, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci 106(6):1704–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner MG, Gardner RH, O’neill RV (2001) Landscape ecology in theory and practice. Springer, New York, p 401

    Google Scholar 

  • Van Zyl JJ (2014) Data processing, SAR Sensors. Encyclopedia of Remote Sensing. 1 Ed. Springer, New York

    Google Scholar 

  • West PC, Gibbs HK, Monfreda C, Wagner J, Barford CC, Carpenter SR, Foley JA (2010) Trading carbon for food: Global comparison of carbon stocks vs. crop yields on agricultural land. Proc National Academy Sci. 107(46):19645–19648

    Google Scholar 

  • Wu J (2007) Scale and scaling: a cross-disciplinary perspective. In Key topics in landscape ecology. Cambridge University Press, 28

    Google Scholar 

  • Yamamoto W, Ap Dewi I, Ibrahim M (2007) Effects of silvopastoral areas on milk production at dual-purpose cattle farms at the semi-humid old agricultural frontier in central Nicaragua. Agric Syst 94(2):368–375

    Article  Google Scholar 

  • Yépez-García RA, Johnson TM, Andrés LA (2011) Meeting the balance of electricity supply and demand in Latin America and the Caribbean. The World Bank, 191

    Google Scholar 

  • Zomer RJ, Neufeldt H, Xu J, Ahrends A, Bossio D, Trabucco A, Wang M (2016) Global tree cover and biomass carbon on agricultural land: the contribution of agroforestry to global and national carbon budgets. Sci Rep 6:29987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aura Cárdenas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cárdenas, A., Schernthanner, H., Moliner, A., Hontoria, C. (2021). Analysis of Land-Use/Land-Cover Changes in a Livestock Landscape Dominated by Silvopastoral Systems. In: Mueller, L., Sychev, V.G., Dronin, N.M., Eulenstein, F. (eds) Exploring and Optimizing Agricultural Landscapes. Innovations in Landscape Research. Springer, Cham. https://doi.org/10.1007/978-3-030-67448-9_10

Download citation

Publish with us

Policies and ethics