Skip to main content

Digital Twin Architecture and Development Trends on Manufacturing Topologies

  • Chapter
  • First Online:
Implementing Industry 4.0

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 202))

Abstract

In today’s competitive landscape, a growing number of enterprises are embarking on cyber-physical digitalization journeys to fulfil customer expectations and vitalize manufacturing processes in a cost-effective manner. Developing on top of Industry 4.0 paradigms, advanced robotics, predictive analytics, and process flow automation benefit from the use of digital replicas known as digital twins (DT). DT is a prevailing technology in manufacturing industries and leverages real-time monitoring, simulation, and decision-aid systems to generate feasible solutions to assist production operations, which can range from predictive maintenance to strategic planning. As a trending technology, many digital twin-driven approaches are formulated to achieve mass customization and implement smart product service systems. Hence, this chapter aims to provide insights into the various digital twin architectures and development trends in manufacturing environments. It also proposes the integration of other emerging technologies to allow stakeholders who are capitalizing on this technology to gain a significant competitive edge in the present competitive environment. With consideration to both business innovation and engineering product lifecycle management, this work serves as a guide to highlight the status of digital twin development trends and benefits with innovative use cases aiming at setting a consistent standard for digital twin creation throughout academia and industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Oztemel, E., Gursev, S.: Literature review of Industry 4.0 and related technologies. J. Intell. Manuf. 31(1), 127–182 (2020). https://doi.org/10.1007/s10845-018-1433-8

    Article  Google Scholar 

  2. Li, X., Chen, C.-H., Zheng, P., Wang, Z., Jiang, Z., Jiang, Z.: A knowledge graph-aided C-K approach for evolutionary smart product-service system development. J. Mech. Des. (May), 1–43 (2020). https://doi.org/10.1115/1.4046807

  3. Lu, Y., Xu, X.: Cloud-based manufacturing equipment and big data analytics to enable on-demand manufacturing services. Robot. Comput. Integr. Manuf. 57 (October 2018), 92–102 (2019). https://doi.org/10.1016/j.rcim.2018.11.006

  4. Zhong, R.Y., Xu, X., Klotz, E., Newman, S.T.: Intelligent Manufacturing in the Context of Industry 4.0: a Review. Engineering 3(5), 616–630 (2017). https://doi.org/10.1016/j.eng.2017.05.015

    Article  Google Scholar 

  5. Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital Twin in manufacturing: a categorical literature review and classification. IFAC-PapersOnLine 51(11), 1016–1022 (2018). https://doi.org/10.1016/j.ifacol.2018.08.474

    Article  Google Scholar 

  6. Lim, K.Y.H., Zheng, P., Chen, C.: A state-of-the-art survey of digital twin: techniques, engineering product lifecycle management and business innovation perspectives. J. Intell. Manuf. (2019). https://doi.org/10.1007/s10845-019-01512-w

  7. Cohen, Y., Naseraldin, H., Chaudhuri, A., Pilati, F.: Assembly systems in Industry 4.0 era: a road map to understand Assembly 4.0. Int. J. Adv. Manuf. Technol. 105(9), 4037–4054 (2019). https://doi.org/10.1007/s00170-019-04203-1

    Article  Google Scholar 

  8. Jones, D., Snider, C., Nassehi, A., Yon, J., Hicks, B.: Characterising the digital twin: a systematic literature review. CIRP J. Manuf. Sci. Technol. (2019) (2020). https://doi.org/10.1016/j.cirpj.2020.02.002

  9. Maleki, E., Belkadi, F., Ritou, M., Bernard, A.: A tailored ontology supporting sensor implementation for the maintenance of industrial machines. Sensors (Switzerland) 17(9) (2017). https://doi.org/10.3390/s17092063

  10. Cavalcante, I.M., Frazzon, E.M., Forcellini, F.A., Ivanov, D.: A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing. Int. J. Inf. Manage. 49(February), 86–97 (2019). https://doi.org/10.1016/j.ijinfomgt.2019.03.004

    Article  Google Scholar 

  11. Lu, Y., Xu, X.: A semantic web-based framework for service composition in a cloud manufacturing environment. J. Manuf. Syst. 42, 69–81 (2017). https://doi.org/10.1016/j.jmsy.2016.11.004

    Article  Google Scholar 

  12. Grieves, M.: Digital twin: manufacturing excellence through virtual factory replication. Whitepaper (2014). https://doi.org/10.5281/zenodo.1493930

  13. Rasheed, A., San, O., Kvamsdal, T.: Digital twin: values, challenges and enablers, pp. 1–31 (2019)

    Google Scholar 

  14. Zheng, P., Xu, X., Chen, C.H.: A data-driven cyber-physical approach for personalised smart, connected product co-development in a cloud-based environment. J. Intell. Manuf., 1–16 (2018). https://doi.org/10.1007/s10845-018-1430-y

  15. Srinivasan, S.: Guide to big data applications (2018)

    Google Scholar 

  16. Giovannini, A., Aubry, A., Panetto, H., El Haouzi, H., Canciglieri, O., Pierrel, L.: Knowledge representation, retrieval and reuse for product family design: an anti-logicist approach. Comput. Ind. Eng. 101, 391–402 (2016). https://doi.org/10.1016/j.cie.2016.10.001

    Article  Google Scholar 

  17. Zheng, P., Sivabalan, A.S.: A generic tri-model-based approach for product-level digital twin development in a smart manufacturing environment. Robot. Comput. Integr. Manuf. 64(February), 101958 (2020). https://doi.org/10.1016/j.rcim.2020.101958

  18. Lim, K.Y.H., Zheng, P., Chen, C., Huang, L.: A digital twin-enhanced system for engineering product family design and optimization. J. Manuf. Syst. 57(August), 82–93 (2020). https://doi.org/10.1016/j.jmsy.2020.08.011

    Article  Google Scholar 

  19. Qi, Q. et al.: Enabling technologies and tools for digital twin. J. Manuf. Syst. (October), 0–1 (2019). https://doi.org/10.1016/j.jmsy.2019.10.001

  20. Øvern, A.: Industry 4.0—digital twins and OPC UA (2018)

    Google Scholar 

  21. Zheng, P., Wang, Z., Chen, C.H., Pheng Khoo, L.: A survey of smart product-service systems: key aspects, challenges and future perspectives. Adv. Eng. Inf. 42(July), 100973 (2019). https://doi.org/10.1016/j.aei.2019.100973

  22. Qi, Q., Tao, F.: digital twin and big data towards smart manufacturing and Industry 4.0: 360 degree comparison. IEEE Access 6, 3585–3593 (2018). https://doi.org/10.1109/access.2018.2793265

    Article  Google Scholar 

  23. Tao, F., Qi, Q., Wang, L., Nee, A.Y.C.: Digital twins and cyber-physical systems toward smart manufacturing and industry 4.0: correlation and comparison. Engineering 5(4), 653–661 (2019). https://doi.org/10.1016/j.eng.2019.01.014

    Article  Google Scholar 

  24. Lu, Y., Liu, C., Wang, K.I.-K., Huang, H., Xu, X.: Digital Twin-driven smart manufacturing: connotation, reference model, applications and research issues. Robot. Comput. Integr. Manuf. 61(April 2019), 101837 (2020). https://doi.org/10.1016/j.rcim.2019.101837

  25. Yang, S., Wang, J., Shi, L., Tan, Y., Qiao, F.: Engineering management for high-end equipment intelligent manufacturing. Front. Eng. Manag. 5(4), 420 (2018). https://doi.org/10.15302/j-fem-2018050

  26. Rosa, P., Sassanelli, C., Urbinati, A., Chiaroni, D., Terzi, S.: Assessing relations between Circular Economy and Industry 4.0: a systematic literature review. Int. J. Prod. Res. 58(6), 1662–1687 (2020). https://doi.org/10.1080/00207543.2019.1680896

    Article  Google Scholar 

  27. Söderberg, R., Wärmefjord, K., Carlson, J.S., Lindkvist, L.: Toward a Digital Twin for real-time geometry assurance in individualized production. CIRP Ann. Manuf. Technol. 66(1), 137–140 (2017). https://doi.org/10.1016/j.cirp.2017.04.038

    Article  Google Scholar 

  28. Schleich, B., Anwer, N., Mathieu, L., Wartzack, S.: Shaping the digital twin for design and production engineering. CIRP Ann. Manuf. Technol. 66(1), 141–144 (2017). https://doi.org/10.1016/j.cirp.2017.04.040

    Article  Google Scholar 

  29. Xu, X.: Machine Tool 4.0 for the new era of manufacturing. Int. J. Adv. Manuf. Technol. 92(5–8), 1893–1900 (2017). https://doi.org/10.1007/s00170-017-0300-7

    Article  Google Scholar 

  30. Luo, W., Hu, T., Zhang, C., Wei, Y.: Digital twin for CNC machine tool: modeling and using strategy. J. Ambient Intell. Humaniz. Comput. 10(3), 1129–1140 (2018). https://doi.org/10.1007/s12652-018-0946-5

    Article  Google Scholar 

  31. Zhang, H., Liu, Q., Chen, X., Zhang, D., Leng, J.: A digital twin-based approach for designing and multi-objective optimization of hollow glass production line. IEEE Access 5, 26901–26911 (2017). https://doi.org/10.1109/access.2017.2766453

    Article  Google Scholar 

  32. Bottani, E., Cammardella, A., Murino, T., Vespoli, S.: From the cyber-physical system to the digital twin: the process development for behaviour modelling of a cyber guided vehicle in M2M logic, pp. 96–102 (2017)

    Google Scholar 

  33. Petkovi, T., Puljiz, D., Markovic, I., Hein, B.: Human intention estimation based on hidden markov model motion validation for safe flexible robotized warehouses. Robot. Comput. Integr. Manuf. 57, 182–196 (2019). https://doi.org/10.1016/j.rcim.2018.11.004

    Article  Google Scholar 

  34. Liu, J., Zhou, H., Tian, G., Liu, X., Jing, X.: Digital twin-based process reuse and evaluation approach for smart process planning. Int. J. Adv. Manuf. Technol., 1619–1634 (2018). https://doi.org/10.1007/s00170-018-2748-5

  35. Tao, F., Zhang, M., Liu, Y., Nee, A.Y.C.: Digital twin driven prognostics and health management for complex equipment. CIRP Ann. 67(1), 169–172 (2018). https://doi.org/10.1016/j.cirp.2018.04.055

    Article  Google Scholar 

  36. Popa, C.L., Cotet, C.E., Popescu, D., Solea, M.F., Şaşcîm (Dumitrescu), S.G., Dobrescu, T.: Material flow design and simulation for a glass panel recycling installation. Waste Manag. Res. 36(7), 653–660 (2018). https://doi.org/10.1177/0734242x18775487

  37. Reim, W., Parida, V., Örtqvist, D.: Product-Service Systems (PSS) business models and tactics—a systematic literature review. J. Clean. Prod. 97, 61–75 (2015). https://doi.org/10.1016/j.jclepro.2014.07.003

    Article  Google Scholar 

  38. Ardolino, M., Rapaccini, M., Saccani, N., Gaiardelli, P., Crespi, G., Ruggeri, C.: The role of digital technologies for the service transformation of industrial companies. Int. J. Prod. Res. 56(6), 2116–2132 (2018). https://doi.org/10.1080/00207543.2017.1324224

    Article  Google Scholar 

  39. Zheng, P., Lim, K.Y.H.: Product family design and optimization: a digital twin-enhanced approach. Procedia CIRP 93, 246–250 (2020). https://doi.org/10.1016/j.procir.2018.02.026

    Article  Google Scholar 

  40. S. Economic Development Board: Manufacturing Transformation Insights Report 2019 (2019)

    Google Scholar 

  41. Cui, Y., Kara, S., Chan, K.C.: Manufacturing big data ecosystem: a systematic literature review. Robot. Comput. Integr. Manuf. 62(September 2019), 101861 (2020). https://doi.org/10.1016/j.rcim.2019.101861

  42. Borth, M., Verriet, J., Muller, G.: Digital twin strategies for SoS. 2019 14th Annu. Conf. Syst. Syst. Eng., 164–169 (2019). ISBN: 978-1-7281-0457-7

    Google Scholar 

  43. Huynh, B.H., Akhtar, H., Sett, M.K.: A universal methodology to create digital twins for serial and parallel manipulators. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp. 3104–3109 (2019). https://doi.org/10.1109/smc.2019.8914195

  44. Myo, K.S., Huynh, B.H., Humza, A., Wang, W.: Digital twin development for serial manipulators: data driven optimized planning and sequencing of tasks (2019)

    Google Scholar 

  45. Ivanov, D., Dolgui, A.: Viability of intertwined supply networks: extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak. Int. J. Prod. Res. 58(10), 2904–2915 (2020). https://doi.org/10.1080/00207543.2020.1750727

  46. APICS: Supply chain operations reference model (2017)

    Google Scholar 

  47. Tran, L.V., Huynh, B.H., Akhtar, H.: Ant colony optimization algorithm for maintenance, repair and overhaul scheduling optimization in the context of Industrie 4.0. Appl. Sci. 9(22) (2019). https://doi.org/10.3390/app9224815

Download references

Acknowledgements

This research is supported by the Agency for Science, Technology and Research (A*STAR) under its Advanced Manufacturing & Engineering (AME) Industry Alignment Funding - Pre-positioning funding scheme (Project No: A1723a0035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kendrik Yan Hong Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lim, K.Y.H., Le, N.T., Agarwal, N., Huynh, B.H. (2021). Digital Twin Architecture and Development Trends on Manufacturing Topologies. In: Toro, C., Wang, W., Akhtar, H. (eds) Implementing Industry 4.0. Intelligent Systems Reference Library, vol 202. Springer, Cham. https://doi.org/10.1007/978-3-030-67270-6_10

Download citation

Publish with us

Policies and ethics