Skip to main content

Gaussian Basis Sets for Solid State Calculations

  • Chapter
  • First Online:
Basis Sets in Computational Chemistry

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 107))

Abstract

Periodic systems such as bulk and surfaces are nowadays routinely studied in simulations. Density functional theory is highly efficient and thus most widely used, though the exact functional is not known. Hartree-Fock theory is a mathematically clear theory, but usually shows larger deviations due to the effects of electronic correlation which are not included. Schemes employing many-body theory are very accurate, but also very demanding, and the implementation of such methods for extended systems is a challenging topic. In any case, the task is to solve the Schrödinger or Kohn-Sham equations numerically. The approximate solution is usually expanded in a basis set. The purpose of this chapter is an overview of these basis sets, with the main focus on Gaussian basis sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ADF2017, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands

    Google Scholar 

  2. André JM (1969) Self-consistent field theory for the electronic structure of polymers. J Chem Phys 50:1536–1542

    Google Scholar 

  3. Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders, Philadelphia

    Google Scholar 

  4. Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2k, An augmented plane wave + Local orbitals program for calculating crystal properties. Karlheinz Schwarz, Technische Universität Wien, Austria

    Google Scholar 

  5. Boettger JC, Trickey SB (1984) Total energy and pressure in the Gaussian-orbitals technique. I. Methodology with application to the high-pressure equation of state of neon. Phys Rev B 29:6425–6433

    Google Scholar 

  6. Boys SF (1950) I. A general method of calculation for the stationary states of any molecular system. Proc R Soc A 200:542–554

    Google Scholar 

  7. Bross H, Bader R (1995) Calculation of the Ground State Properties of Diamond and Cubic Boron Nitride. Phys Stat Sol (b) 191:369–385

    Google Scholar 

  8. Callaway J, Zou X, Bagayoko D (1983) Total energy of metallic lithium. Phys Rev B 27:631–635

    Google Scholar 

  9. Ching WY, Callaway J (1974) Band structure, cohesive energy, optical conductivity, and Compton profile of lithium. Phys Rev B 9:5115–5121

    Google Scholar 

  10. Condon EU, Shortley G (1951) The theory of atomic spectra. Cambridge University Press, Cambridge

    Google Scholar 

  11. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517

    Google Scholar 

  12. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764

    Google Scholar 

  13. Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728

    Google Scholar 

  14. Dolg M, Xiaoyan Cao X (2012) Relativistic pseudopotentials: their development and scope of applications. Chem Rev 112:403–480

    Google Scholar 

  15. Doll K (2006) Calculation of the work function with a local basis set. Surf Sci 600:L321–L325

    Google Scholar 

  16. Doll K (2009) Ab initio calculations with a Gaussian basis set for metallic surfaces and the adsorption thereon. In: Basiuk V, Ugliengo P (eds) Quantum chemical calculations of surfaces and interfaces of materials. American Scientific Publishers, pp 41–53

    Google Scholar 

  17. Doll K, Harrison NM (2000) Chlorine adsorption on the Cu(111) surface Chem Phys Lett 317:282–289

    Google Scholar 

  18. Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, Harrison NM, Bush IJ, D’Arco Ph, Llunell M, Causà M, Noël Y (2014) CRYSTAL14. University of Torino, Torino

    Google Scholar 

  19. Feibelman PJ (1988) Local-orbital basis for defect electronic structure calculations of an Al(100) film. Phys Rev B 38:1849–1855

    Google Scholar 

  20. Feibelman PJ (1995) Anisotropy of the stress on fcc(110) surfaces. Phys Rev B 51:17867–17875

    Google Scholar 

  21. Feller D (1996) The role of databases in support of computational chemistry calculations. J Comp Chem 17:1571–1586

    Google Scholar 

  22. Fuentealba P, Szentpály LV, Preuß H, Stoll H (1985) Pseudopotential calculations for alkaline-earth atoms. J Phys B 18:1287–1296

    Google Scholar 

  23. García-Gil S, García A, Lorente N, Ordejón P (2009) Optimal strictly localized basis sets for noble metal surfaces. Phys Rev B 79:075441

    Google Scholar 

  24. Goedecker S (1999) Linear scaling electronic structure methods. Rev Mod Phys 71:1085–1123

    Google Scholar 

  25. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor chim Acc 28:213–222

    Google Scholar 

  26. Harmon BN, Weber W, Hamann DR (1982) Total-energy calculations for Si with a first-principles linear-combination-of-atomic-orbitals method. Phys Rev B 25:1109–1115

    Google Scholar 

  27. Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. xii. further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261

    Google Scholar 

  28. Helgaker T, Jørgensen P, Olsen J (2000) Molecular electronic-structure theory. Wiley, Chichester

    Google Scholar 

  29. Kaupp M, Schleyer PVR, Stoll H, Preuss H (1991) Pseudopotential approaches to Ca, Sr, and Ba hydrides. Why are some alkaline earth MX\(_2\) compounds bent? J Chem Phys 94, 1360–1366

    Google Scholar 

  30. Kreitlow J, Menzel D, Wolter AUB, Schoenes J, Süllow S, Feyerherm R, Doll K (2005) Pressure dependence of \({\text{C}}_{4}{\text{ N }}_{2}{\text{ H }}_{4}\)-mediated superexchange in \(X{\text{ Cl }}_{2}{({\text{ C }}_{4}{\text{ N }}_{2}{\text{ H }}_{4})}_{2}(X=\text{ Fe },\text{ Co },\text{ Ni})\). Phys Rev B 72:134418

    Google Scholar 

  31. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mat Sci 6:15–50

    Google Scholar 

  32. Kudin KN, Scuseria GE, Martin RL (2002) Hybrid density-functional theory and the insulating gap of UO\({}_{2}\). Phys Rev Lett 89:266402

    Google Scholar 

  33. Louie SG, Ho K-M, Cohen ML (1979) Self-consistent mixed-basis approach to the electronic structure of solids. Phys Rev B 19:1774–1782

    Google Scholar 

  34. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Google Scholar 

  35. Pack JD, Monkhorst HJ (1977) Special points for Brillouin-zone integrations—a reply. Phys Rev B 16:1748–1749

    Google Scholar 

  36. Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 64:1045–1097

    Google Scholar 

  37. Peintinger MF, Oliveira DV, Bredow T (2013) Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations. J Comput Chem 34:451–459

    Google Scholar 

  38. Pan B, Wang N-P, Rohlfing M (2015) Electron-hole excitations and optical spectra of bulk SrO from many-body perturbation theory. Appl Phys A 120:587–593

    Google Scholar 

  39. Pisani C, Dovesi R, Roetti C (1988) Hartree-Fock Ab initio treatment of crystalline systems. Lecture notes in Chemistry, vol 48. Springer, Berlin

    Google Scholar 

  40. Saunders VR (1983) Molecular integrals for Gaussian type functions. In: Diercksen GHF, Wilson S (eds) Methods in computational molecular physics, pp 1–36. Reidel, Dordrecht, Netherlands

    Google Scholar 

  41. Schmidt MW, Ruedenberg K (1979) Effective convergence to complete orbital bases and to the atomic Hartree-Fock limit through systematic sequences of Gaussian primitives. J Chem Phys 71:3951–3962

    Google Scholar 

  42. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) Basis set exchange: a community database for computational sciences. J Chem Inf Model 47:1045–1052

    Google Scholar 

  43. Suhai S (1974) The electronic structure of periodic protein models. Theor Chim Acta 34:157–163

    Google Scholar 

  44. Szabo A, Ostlund NS (1989) Modern quantum chemistry. McGraw-Hill, New York

    Google Scholar 

  45. Teramae H, Yamabe T, Imamura A (1983) Ab initio effective core potential studies on polymers. Theor Chim Acta 64:1–12

    Google Scholar 

  46. Towler M (2000) An introductory guide to Gaussian basis sets in solid-state electronic structure calculations. https://vallico.net/mike_towler/basis_sets/basis_sets_2000.ps. Accessed 17 June 2020

  47. Towler MD, Allan NL, Harrison NM, Saunders VR, Mackrodt WC, Aprà E (1994) Ab initio study of MnO and NiO. Phys Rev B 50:5041–5054

    Google Scholar 

  48. Towler MD, Dovesi R, Saunders VR (1995) Magnetic interactions and the cooperative Jahn-Teller effect in \({\rm KCuF}_{3}\). Phys Rev B 52:10150–10159

    Google Scholar 

  49. Zagorac D, Doll K, Schön JC, Jansen M (2012) Sterically active electron pairs in lead sulfide? an investigation of the electronic and vibrational properties of PbS in the transition region between the rock salt and the \(\alpha \)-GeTe-type modifications. Chem Eur J 18:10929–10936

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Doll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Doll, K. (2021). Gaussian Basis Sets for Solid State Calculations. In: Perlt, E. (eds) Basis Sets in Computational Chemistry. Lecture Notes in Chemistry, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-030-67262-1_6

Download citation

Publish with us

Policies and ethics