Skip to main content

Fluorouracil or Capecitabine Overdose

  • Chapter
  • First Online:
Oncologic Emergency Medicine

Abstract

5-Fluorouracil (5-FU) and its oral prodrug capecitabine are mainstays of oncologic therapy. They are fluoropyrimidine derivatives and function as antimetabolites. Fluoropyrimidines may be administered as monotherapy or in combination with other chemotherapeutic agents. They are predominantly used for the treatment of gastrointestinal, breast, and head and neck cancers. The therapeutic and toxicologic effects of 5-FU and capecitabine are attributed to their deleterious incorporation into RNA and DNA, and to their inhibition of thymidylate synthetase. Studies differ, but it is estimated that somewhere between 10% and 40% of patients on 5-FU and capecitabine develop some form of severe or life-threatening toxicity. Life-threatening toxicity may result from myelosuppression, diarrhea, mucositis, neurotoxicity, and cardiotoxicity. Hand-and-foot syndrome is also a characteristic adverse effect of 5-FU and capecitabine. Toxicity may result from intentional overdose, iatrogenic overdose, or therapeutic administration. A significant proportion severe toxicity occurs in the setting of therapeutic administration rather than acute overdose and is generally attributed to genetic polymorphisms. Treatment of toxicity is largely supportive. The antidote for fluoropyrimidine toxicity is uridine triacetate, but its indications are limited, and ideally the treating oncologist or a toxicologist should be consulted prior to its administration.

Note: Dr. Neumann performed this research at the Rocky Mountain Poison and Drug Safety, Denver Health and Hospital Authority, Denver, Colorado. She is now with the Department of Emergency Medicine, Yale University School of Medicine, New Haven, Connecticut.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Longley DB, Harkin DP, Johnston PG. 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3(5):330–8. https://doi.org/10.1038/nrc1074.

    Article  CAS  PubMed  Google Scholar 

  2. Rutman RJ, Cantarow A, Paschkis KE. Studies in 2-acetylaminofluorene carcinogenesis. III. The utilization of uracil-2-C14 by preneoplastic rat liver and rat hepatoma. Cancer Res. 1954;14(2):119–23.

    CAS  PubMed  Google Scholar 

  3. Diasio RB, Harris BE. Clinical pharmacology of 5-fluorouracil. Clin Pharmacokinet. 1989;16(4):215–37.

    CAS  PubMed  Google Scholar 

  4. Daher GC, Harris BE, Diasio RB. Metabolism of pyrimidine analogues and their nucleosides. Pharmacol Ther. 1990;48(2):189–222.

    CAS  PubMed  Google Scholar 

  5. National Cancer Institute Publications. NCI dictionaries. NCI dictionary of cancer terms. Bethesda: National Cancer Institute; 2020. https://www.cancer.gov/publications/dictionaries/cancer-terms.

  6. Lamont EB, Schilsky RL. The oral fluoropyrimidines in cancer chemotherapy. Clin Cancer Res. 1999;5(9):2289–96.

    CAS  PubMed  Google Scholar 

  7. Pu AT, Robertson JM. Current status of radiation sensitization by fluoropyrimidines. Oncology. 1995;9(8):707–14.

    CAS  PubMed  Google Scholar 

  8. Abele R, Alberto P, Kaplan S, Siegenthaler P, Hofmann V, Ryssel HJ, et al. Phase II study of doxifluridine in advanced colorectal adenocarcinoma. J Clin Oncol. 1983;1(12):750–4.

    CAS  PubMed  Google Scholar 

  9. Sakamoto J, Hamada C, Kodaira S, Nakazato H, Ohashi Y. Adjuvant therapy with oral fluoropyrimidines as main chemotherapeutic agents after curative resection for colorectal cancer: individual patient data meta-analysis of randomized trials. Jpn J Clin Oncol. 1999;29(2):78–86.

    CAS  PubMed  Google Scholar 

  10. Walko CM, Lindley C. Capecitabine: a review. Clin Ther. 2005;27(1):23–44. https://doi.org/10.1016/j.clinthera.2005.01.005.

    Article  CAS  PubMed  Google Scholar 

  11. Xeloda (capecitabine) tablets, for oral use [package insert]. South San Francisco: Genentech; 1998.

    Google Scholar 

  12. Fluorouracil injection, for intravenous use [package insert]. Irvine: Spectrum Pharmaceuticals Inc.; 1962.

    Google Scholar 

  13. National Institutes of Health, Public Health Service, HHS. Public teleconference regarding licensing and collaborative research opportunities for: methods and compositions relating to detecting dihydropyrimidine dehydrogenase (DPD). 3 July 2008. US National Archives. Federal Register. 73 FR 38233. https://www.federalregister.gov/documents/2008/07/03/E8-15182/public-teleconference-regarding-licensing-and-collaborative-research-opportunities-for-methods-and.

  14. Mikhail SE, Sun JF, Marshall JL. Safety of capecitabine: a review. Expert Opin Drug Saf. 2010;9(5):831–41.

    CAS  PubMed  Google Scholar 

  15. Cassidy J, Twelves C, Van Cutsem E, Hoff P, Bajetta E, Boyer M, et al. First-line oral capecitabine therapy in metastatic colorectal cancer: a favorable safety profile compared with intravenous 5-fluorouracil/leucovorin. Ann Oncol. 2002;13(4):566–75.

    CAS  PubMed  Google Scholar 

  16. Meta-Analysis Group In Cancer, Lévy E, Piedbois P, Buyse M, Pignon JP, Rougier P, Ryan L, et al. Toxicity of fluorouracil in patients with advanced colorectal cancer: effect of administration schedule and prognostic factors. J Clin Oncol. 1998;16(11):3537–41.

    Google Scholar 

  17. Lunenburg CA, Henricks LM, Guchelaar H-J, Swen JJ, Deenen MJ, Schellens JH, et al. Prospective DPYD genotyping to reduce the risk of fluoropyrimidine-induced severe toxicity: ready for prime time. Eur J Cancer. 2016;54:40–8.

    PubMed  Google Scholar 

  18. Amstutz U, Froehlich TK, Largiadèr CR. Dihydropyrimidine dehydrogenase gene as a major predictor of severe 5-fluorouracil toxicity. Pharmacogenomics. 2011;12(9):1321–36.

    CAS  PubMed  Google Scholar 

  19. Saltz LB, Cox JV, Blanke C, Rosen LS, Fehrenbacher L, Moore MJ, et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N Engl J Med. 2000;343(13):905–14.

    CAS  PubMed  Google Scholar 

  20. Rosmarin D, Palles C, Pagnamenta A, Kaur K, Pita G, Martin M, et al. A candidate gene study of capecitabine-related toxicity in colorectal cancer identifies new toxicity variants at DPYD and a putative role for ENOSF1 rather than TYMS. Gut. 2015;64(1):111–20.

    CAS  PubMed  Google Scholar 

  21. Milano G, Etienne MC, Pierrefite V, Barberi-Heyob M, Deporte-Fety R, Renee N. Dihydropyrimidine dehydrogenase deficiency and fluorouracil-related toxicity. Br J Cancer. 1999;79(3–4):627–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ciccolini J, Gross E, Dahan L, Lacarelle B, Mercier C. Routine Dihydropyrimidine dehydrogenase testing for anticipating 5-fluorouracil–related severe toxicities: hype or hope? Clin Colorectal Cancer. 2010;9(4):224–8.

    CAS  PubMed  Google Scholar 

  23. Terrazzino S, Cargnin S, Re MD, Danesi R, Canonico PL, Genazzani AA. DPYD IVS14+1G>A and 2846A>T genotyping for the prediction of severe fluoropyrimidine-related toxicity: a meta-analysis. Pharmacogenomics. 2013;14(11):1255–72.

    CAS  PubMed  Google Scholar 

  24. Meulendijks D, van Hasselt JGC, Huitema ADR, van Tinteren H, Deenen MJ, Beijnen JH, et al. Renal function, body surface area, and age are associated with risk of early-onset fluoropyrimidine-associated toxicity in patients treated with capecitabine-based anticancer regimens in daily clinical care. Eur J Cancer. 2016;54:120–30.

    CAS  PubMed  Google Scholar 

  25. Schwab M, Zanger UM, Marx C, Schaeffeler E, Klein K, Dippon J, et al. Role of genetic and nongenetic factors for fluorouracil treatment-related severe toxicity: a prospective clinical trial by the German 5-FU Toxicity Study Group. J Clin Oncol. 2008;26(13):2131–8.

    CAS  PubMed  Google Scholar 

  26. Tsalic M, Bar-Sela G, Beny A, Visel B, Haim N. Severe toxicity related to the 5-fluorouracil/leucovorin combination (the Mayo Clinic regimen): a prospective study in colorectal cancer patients. Am J Clin Oncol. 2003;26(1):103–6.

    CAS  PubMed  Google Scholar 

  27. Rothenberg ML, Meropol NJ, Poplin EA, Van Cutsem E, Wadler S. Mortality associated with irinotecan plus bolus fluorouracil/leucovorin: summary findings of an independent panel. J Clin Oncol. 2001;19(18):3801–7.

    CAS  PubMed  Google Scholar 

  28. Ma WW, Saif MW, El-Rayes BF, Fakih MG, Cartwright TH, Posey JA, et al. Emergency use of uridine triacetate for the prevention and treatment of life-threatening 5-fluorouracil and capecitabine toxicity. Cancer. 2017;123(2):345–56.

    CAS  PubMed  Google Scholar 

  29. Mercier C, Ciccolini J. Profiling dihydropyrimidine dehydrogenase deficiency in patients with cancer undergoing 5-fluorouracil/capecitabine therapy. Clin Colorectal Cancer. 2006;6(4):288–96.

    CAS  PubMed  Google Scholar 

  30. Loganayagam A, Arenas Hernandez M, Corrigan A, Fairbanks L, Lewis CM, Harper P, et al. Pharmacogenetic variants in the DPYD, TYMS, CDA and MTHFR genes are clinically significant predictors of fluoropyrimidine toxicity. Br J Cancer. 2013;108(12):2505–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dahan L, Ciccolini J, Evrard A, Mbatchi L, Tibbitts J, Ries P, et al. Sudden death related to toxicity in a patient on capecitabine and irinotecan plus bevacizumab intake: pharmacogenetic implications. J Clin Oncol. 2012;30(4):e41–e4.

    CAS  PubMed  Google Scholar 

  32. Wohlhueter RM, McIvor RS, Plagemann PGW. Facilitated transport of uracil and 5-fluorouracil, and permeation of orotic acid into cultured mammalian cells. J Cell Physiol. 1980;104(3):309–19.

    CAS  PubMed  Google Scholar 

  33. Schüller J, Cassidy J, Dumont E, Roos B, Durston S, Banken L, et al. Preferential activation of capecitabine in tumor following oral administration to colorectal cancer patients. Cancer Chemother Pharmacol. 2000;45(4):291–7.

    PubMed  Google Scholar 

  34. Miwa M, Ura M, Nishida M, Sawada N, Ishikawa T, Mori K, et al. Design of a novel oral fluoropyrimidine carbamate, capecitabine, which generates 5-fluorouracil selectively in tumours by enzymes concentrated in human liver and cancer tissue. Eur J Cancer. 1998;34(8):1274–81.

    CAS  PubMed  Google Scholar 

  35. Budman DR, Meropol NJ, Reigner B, Creaven PJ, Lichtman SM, Berghorn E, et al. Preliminary studies of a novel oral fluoropyrimidine carbamate: capecitabine. J Clin Oncol. 1998;16(5):1795–802.

    CAS  PubMed  Google Scholar 

  36. Ichikawa W, Takahashi T, Suto K, Sasaki Y, Hirayama R. Orotate phosphoribosyltransferase gene polymorphism predicts toxicity in patients treated with bolus 5-fluorouracil regimen. Clin Cancer Res. 2006;12(13):3928–34.

    CAS  PubMed  Google Scholar 

  37. Heggie GD, Sommadossi J-P, Cross DS, Huster WJ, Diasio RB. Clinical pharmacokinetics of 5-fluorouracil and its metabolites in plasma, urine, and bile. Cancer Res. 1987;47(8):2203–6.

    CAS  PubMed  Google Scholar 

  38. Danenberg PV, Danenberg KD. Effect of 5, 10-methylenetetrahydrofolate on the dissociation of 5-fluoro-2′-deoxyuridylate from thymidylate synthetase: evidence for an ordered mechanism. Biochemistry. 1978;17(19):4018–24.

    CAS  PubMed  Google Scholar 

  39. Santi DV, McHenry CS, Sommer H. Mechanism of interaction of thymidylate synthetase with 5-fluorodeoxyuridylate. Biochemistry. 1974;13(3):471–81.

    CAS  PubMed  Google Scholar 

  40. Sommer H, Santi DV. Purification and amino acid analysis of an active site peptide from thymidylate synthetase containing covalently bound 5-fluoro-2′-deoxyuridylate and methylenetetrahydrofolate. Biochem Biophys Res Commun. 1974;57(3):689–95.

    CAS  PubMed  Google Scholar 

  41. Santi DV, McHenry CS. 5-Fluoro-2′-deoxyuridylate: covalent complex with thymidylate synthetase. Proc Natl Acad Sci U S A. 1972;69(7):1855–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mitrovski B, Pressacco J, Mandelbaum S, Erlichman C. Biochemical effects of folate-based inhibitors of thymidylate synthase in MGH-U1 cells. Cancer Chemother Pharmacol. 1994;35(2):109–14.

    CAS  PubMed  Google Scholar 

  43. Aherne GW, Hardcastle A, Raynaud F, Jackman AL. Immunoreactive dUMP and TTP pools as an index of thymidylate synthase inhibition; effect of tomudex (ZD1694) and a nonpolyglutamated quinazoline antifolate (CB30900) in L1210 mouse leukaemia cells. Biochem Pharmacol. 1996;51(10):1293–301.

    CAS  PubMed  Google Scholar 

  44. Ingraham HA, Tseng B, Goulian M. Nucleotide levels and incorporation of 5-fluorouracil and uracil into DNA of cells treated with 5-fluorodeoxyuridine. Mol Pharmacol. 1982;21(1):211–6.

    CAS  PubMed  Google Scholar 

  45. Cheng Y, Nakayama K. Effects of 5-fluoro-2′-deoxyuridine on DNA metabolism in HeLa cells. Mol Pharmacol. 1983;23(1):171–4.

    CAS  PubMed  Google Scholar 

  46. Andersen S, Heine T, Sneve R, Konig I, Krokan HE, Epe B, et al. Incorporation of dUMP into DNA is a major source of spontaneous DNA damage, while excision of uracil is not required for cytotoxicity of fluoropyrimidines in mouse embryonic fibroblasts. Carcinogenesis. 2005;26(3):547–55.

    CAS  PubMed  Google Scholar 

  47. Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V. 5-Fluorouracil and other fluoropyrimidines in colorectal cancer: past, present and future. Pharmacol Ther. 2020;206:107447.

    CAS  PubMed  Google Scholar 

  48. Schuetz JD, Wallace HJ, Diasio RB. DNA repair following incorporation of 5-fluorouracil into DNA of mouse bone marrow cells. Cancer Chemother Pharmacol. 1988;21(3):208–10.

    CAS  PubMed  Google Scholar 

  49. Tanaka M, Yoshida S, Saneyoshi M, Yamaguchi T. Utilization of 5-fluoro-2′-deoxyuridine triphosphate and 5-fluoro-2′-deoxycytidine triphosphate in DNA synthesis by DNA polymerases α and β from calf thymus. Cancer Res. 1981;41(10):4132–5.

    CAS  PubMed  Google Scholar 

  50. Kufe D, Major P, Egan E, Loh E. 5-Fluoro-2′-deoxyuridine incorporation in L1210 DNA. J Biol Chem. 1981;256(17):8885–8.

    CAS  PubMed  Google Scholar 

  51. Major P, Egan E, Herrick D, Kufe D. 5-Fluorouracil incorporation in DNA of human breast carcinoma cells. Cancer Res. 1982;42(8):3005–9.

    CAS  PubMed  Google Scholar 

  52. Houghton JA, Tillman DM, Harwood FG. Ratio of 2′-deoxyadenosine-5′-triphosphate/thymidine-5′-triphosphate influences the commitment of human colon carcinoma cells to thymineless death. Clin Cancer Res. 1995;1(7):723–30.

    CAS  PubMed  Google Scholar 

  53. Yoshioka A, Tanaka S, Hiraoka O, Koyama Y, Hirota Y, Ayusawa D, et al. Deoxyribonucleoside triphosphate imbalance. 5-Fluorodeoxyuridine-induced DNA double strand breaks in mouse FM3A cells and the mechanism of cell death. J Biol Chem. 1987;262(17):8235–41.

    CAS  PubMed  Google Scholar 

  54. Lindahl T. An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc Natl Acad Sci U S A. 1974;71(9):3649–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Grem JL, Fischer P. Enhancement of 5-fluorouracil’s anticancer activity by dipyridamole. Pharmacol Ther. 1989;40(3):349–71.

    CAS  PubMed  Google Scholar 

  56. Kufe DW, Major PP. 5-Fluorouracil incorporation into human breast carcinoma RNA correlates with cytotoxicity. J Biol Chem. 1981;256(19):9802–5.

    CAS  PubMed  Google Scholar 

  57. Glazer RI, Lloyd LS. Association of cell lethality with incorporation of 5-fluorouracil and 5-fluorouridine into nuclear RNA in human colon carcinoma cells in culture. Mol Pharmacol. 1982;21(2):468–73.

    CAS  PubMed  Google Scholar 

  58. Carrico CK, Glazer RI. Effect of 5-fluorouracil on the synthesis and translation of polyadenylic acid-containing RNA from regenerating rat liver. Cancer Res. 1979;39(9):3694–701.

    CAS  PubMed  Google Scholar 

  59. Armstrong R, Lewis M, Stern S, Cadman E. Acute effect of 5-fluorouracil on cytoplasmic and nuclear dihydrofolate reductase messenger RNA metabolism. J Biol Chem. 1986;261(16):7366–71.

    CAS  PubMed  Google Scholar 

  60. Dolnick B, Pink JJ. 5-fluorouracil modulation of dihydrofolate reductase RNA levels in methotrexate-resistant KB cells. J Biol Chem. 1983;258(21):13299–306.

    CAS  PubMed  Google Scholar 

  61. Ramberg ES, Ishaq M, Rulf S, Moeller B, Horowitz J. Inhibition of transfer RNA function by replacement of uridine and uridine-derived nucleosides with 5-fluorouridine. Biochemistry. 1978;17(19):3978–85.

    CAS  PubMed  Google Scholar 

  62. Armstrong R, Takimoto C, Cadman E. Fluoropyrimidine-mediated changes in small nuclear RNA. J Biol Chem. 1986;261(1):21–4.

    CAS  PubMed  Google Scholar 

  63. Ghoshal K, Jacob ST. Specific inhibition of pre-ribosomal RNA processing in extracts from the lymphosarcoma cells treated with 5-fluorouracil. Cancer Res. 1994;54(3):632–6.

    CAS  PubMed  Google Scholar 

  64. Santi DV, Hardy LW. Catalytic mechanism and inhibition of trna (uracil-5-) methyltransferase: evidence for covalent catalysis. Biochemistry. 1987;26(26):8599–606.

    CAS  PubMed  Google Scholar 

  65. Kanamaru R, Kakuta H, Sato T, Ishioka C, Wakui A. The inhibitory effects of 5-fluorouracil on the metabolism of preribosomal and ribosomal RNA in L-1210 cells in vitro. Cancer Chemother Pharmacol. 1986;17(1):43–6.

    CAS  PubMed  Google Scholar 

  66. Randerath K, Tseng WC, Harris JS, Lu LJW. Specific effects of 5-fluoropyrimidines and 5-azapyrimidines on modification of the 5 position of pyrimidines, in particular the synthesis of 5-methyluracil and 5-methylcytosine in nucleic acids. In: Nass G, editor. Modified nucleosides and cancer. Recent results in cancer research/Fortschritte der Krebsforschung/Progrès dans les recherches sur Ie cancer, vol. 84. Berlin, Heidelberg: Springer; 1983. https://doi.org/10.1007/978-3-642-81947-6_22.

    Chapter  Google Scholar 

  67. Patton JR. Ribonucleoprotein particle assembly and modification of U2 small nuclear RNA containing 5-fluorouridine. Biochemistry. 1993;32(34):8939–44.

    CAS  PubMed  Google Scholar 

  68. Doong S-L, Dolnick B. 5-fluorouracil substitution alters pre-mRNA splicing in vitro. J Biol Chem. 1988;263(9):4467–73.

    CAS  PubMed  Google Scholar 

  69. Diasio RB, Beavers T, Carpenter J. Familial deficiency of dihydropyrimidine dehydrogenase. Biochemical basis for familial pyrimidinemia and severe 5-fluorouracil-induced toxicity. J Clin Invest. 1988;81(1):47–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Casale F, Canaparo R, Serpe L, Muntoni E, Pepa CD, Costa M, et al. Plasma concentrations of 5-fluorouracil and its metabolites in colon cancer patients. Pharmacol Res. 2004;50(2):173–9.

    CAS  PubMed  Google Scholar 

  71. Fraile RJ, Baker LH, Buroker TR, Horwitz J, Vaitkevicius V. Pharmacokinetics of 5-fluorouracil administered orally, by rapid intravenous and by slow infusion. Cancer Res. 1980;40(7):2223–8.

    CAS  PubMed  Google Scholar 

  72. Fleming GF, Schilsky RL, Schumm LP, Meyerson A, Hong AM, Vogelzang NJ, et al. Phase I and pharmacokinetic study of 24-hour infusion 5-fluorouracil and leucovorin in patients with organ dysfunction. Ann Oncol. 2003;14(7):1142–7.

    CAS  PubMed  Google Scholar 

  73. Chirstophidis N, Vajda F, Lucas I, Drummer O, Moon W, Louis W. Fluorouracil therapy in patients with carcinoma of the large bowel: a pharmacokinetic comparison of various rates and routes of administration. Clin Pharmacokinet. 1978;3(4):330–6.

    CAS  PubMed  Google Scholar 

  74. Douglass H Jr, Mittelman A. Metabolic studies of 5-fluorouracil—II. Influences of the route of administration on the dynamics of distribution in man. Cancer. 1974;34(6):1878–81.

    PubMed  Google Scholar 

  75. Twelves C, Glynne-Jones R, Cassidy J, Schuller J, Goggin T, Roos B, et al. Effect of hepatic dysfunction due to liver metastases on the pharmacokinetics of capecitabine and its metabolites. Clin Cancer Res. 1999;5(7):1696–702.

    CAS  PubMed  Google Scholar 

  76. Reigner B, Blesch K, Weidekamm E. Clinical pharmacokinetics of capecitabine. Clin Pharmacokinet. 2001;40(2):85–104.

    CAS  PubMed  Google Scholar 

  77. Kolesar JM, Johnson CL, Freeberg BL, Berlin JD, Schiller JH. Warfarin-5-FU interaction--a consecutive case series. Pharmacotherapy. 1999;19(12):1445–9.

    CAS  PubMed  Google Scholar 

  78. Brickell K, Porter D, Thompson P. Phenytoin toxicity due to fluoropyrimidines (5FU/capecitabine): three case reports. Br J Cancer. 2003;89(4):615–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Grogan NSJ, Gaspar K, Lyckholm L. Management of 5-fluorouracil overdose with uridine triacetate in a patient unable to tolerate oral administration of antidote. Austin J Med Oncol. 2017;4(1):1031.

    Google Scholar 

  80. Ma WW, Cartwright TH, El-Rayes BF, Posey J, Fakih M, King T, et al. Uridine triacetate as a life-saving antidote to capecitabine toxicity. J Clin Oncol. 2016;34(15 Suppl):e21612.

    Google Scholar 

  81. Ison G, Beaver JA, McGuinn WD, Palmby TR, Dinin J, Charlab R, et al. FDA approval: uridine triacetate for the treatment of patients following fluorouracil or capecitabine overdose or exhibiting early-onset severe toxicities following administration of these drugs. Clin Cancer Res. 2016;22(18):4545–9.

    CAS  PubMed  Google Scholar 

  82. Mercier C, Dupuis C, Blesius A, Fanciullino R, Yang CG, Padovani L, et al. Early severe toxicities after capecitabine intake: possible implication of a cytidine deaminase extensive metabolizer profile. Cancer Chemother Pharmacol. 2009;63(6):1177–80.

    PubMed  Google Scholar 

  83. Serdjebi C, Milano G, Ciccolini J. Role of cytidine deaminase in toxicity and efficacy of nucleosidic analogs. Expert Opin Drug Metab Toxicol. 2015;11(5):665–72.

    CAS  PubMed  Google Scholar 

  84. Johnson MR, Hageboutros A, Wang K, High L, Smith JB, Diasio RB. Life-threatening toxicity in a dihydropyrimidine dehydrogenase-deficient patient after treatment with topical 5-fluorouracil. Clin Cancer Res. 1999;5(8):2006–11.

    CAS  PubMed  Google Scholar 

  85. Jennings BA, Kwok CS, Willis G, Matthews V, Wawruch P, Loke YK. Functional polymorphisms of folate metabolism and response to chemotherapy for colorectal cancer, a systematic review and meta-analysis. Pharmacogenet Genomics. 2012;22(4):290–304.

    CAS  PubMed  Google Scholar 

  86. Pullarkat S, Stoehlmacher J, Ghaderi V, Xiong Y, Ingles S, Sherrod A, et al. Thymidylate synthase gene polymorphism determines response and toxicity of 5-FU chemotherapy. Pharmacogenomics J. 2001;1(1):65–70.

    CAS  PubMed  Google Scholar 

  87. Saif MW, Syrigos K, Mehra R, Mattison LK, Diasio RB. Dihydropyrimidine dehydrogenase deficiency (DPD) in GI malignancies: experience of 4-years. Pakistan J Med Sci Q. 2007;23(6):832.

    Google Scholar 

  88. Morel A, Boisdron-Celle M, Fey L, Soulie P, Craipeau MC, Traore S, et al. Clinical relevance of different dihydropyrimidine dehydrogenase gene single nucleotide polymorphisms on 5-fluorouracil tolerance. Mol Cancer Ther. 2006;5(11):2895–904.

    CAS  PubMed  Google Scholar 

  89. Zhang H, Li Y-M, Zhang H, Jin X. DPYD* 5 gene mutation contributes to the reduced DPYD enzyme activity and chemotherapeutic toxicity of 5-FU. Med Oncol. 2007;24(2):251–8.

    CAS  PubMed  Google Scholar 

  90. Raida M, Schwabe W, Häusler P, Van Kuilenburg AB, Van Gennip AH, Behnke D, et al. Prevalence of a common point mutation in the dihydropyrimidine dehydrogenase (DPD) gene within the 5′-splice donor site of intron 14 in patients with severe 5-fluorouracil (5-FU)-related toxicity compared with controls. Clin Cancer Res. 2001;7(9):2832–9.

    CAS  PubMed  Google Scholar 

  91. Van Kuilenburg AB, Meinsma R, Zoetekouw L, Van Gennip AH. High prevalence of the IVS14+ 1G> A mutation in the dihydropyrimidine dehydrogenase gene of patients with severe 5-fluorouracil-associated toxicity. Pharmacogenet Genomics. 2002;12(7):555–8.

    Google Scholar 

  92. van Kuilenburg AB, Haasjes J, Richel DJ, Zoetekouw L, Van Lenthe H, De Abreu RA, et al. Clinical implications of dihydropyrimidine dehydrogenase (DPD) deficiency in patients with severe 5-fluorouracil-associated toxicity: identification of new mutations in the DPD gene. Clin Cancer Res. 2000;6(12):4705–12.

    PubMed  Google Scholar 

  93. Yen JL, McLeod HL. Should DPD analysis be required prior to prescribing fluoropyrimidines? Eur J Cancer. 2007;43(6):1011–6.

    PubMed  Google Scholar 

  94. Etienne MC, Lagrange JL, Dassonville O, Fleming R, Thyss A, Renee N, et al. Population study of dihydropyrimidine dehydrogenase in cancer patients. J Clin Oncol. 1994;12(11):2248–53.

    CAS  PubMed  Google Scholar 

  95. Lu Z, Zhang R, Diasio RB. Dihydropyrimidine dehydrogenase activity in human peripheral blood mononuclear cells and liver: population characteristics, newly identified deficient patients, and clinical implication in 5-fluorouracil chemotherapy. Cancer Res. 1993;53(22):5433–8.

    CAS  PubMed  Google Scholar 

  96. Burns R, Beland SS. Effect of biological time on the determination of the LD50 of 5-fluorouracil in mice. Pharmacology. 1984;28(5):296–300.

    CAS  PubMed  Google Scholar 

  97. Johnson RK, Garibjanian BT, Houchens DP, Kline I, Gaston MR, Syrkin AB, et al. Comparison of 5-fluorouracil and ftorafur. I. Quantitative and qualitative differences in toxicity to mice. Cancer Treat Rep. 1976;60(9):1335–45.

    CAS  PubMed  Google Scholar 

  98. Liu J, Skradis A, Kolar C, Kolath J, Anderson J, Lawson T, et al. Increased cytotoxicity and decreased in vivo toxicity of FdUMP [10] relative to 5-FU. Nucleosides Nucleotides. 1999;18(8):1789–802.

    CAS  PubMed  Google Scholar 

  99. Milano G, Etienne-Grimaldi MC, Mari M, Lassalle S, Formento JL, Francoual M, et al. Candidate mechanisms for capecitabine-related hand–foot syndrome. Br J Clin Pharmacol. 2008;66(1):88–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Gressett SM, Stanford BL, Hardwicke F. Management of hand-foot syndrome induced by capecitabine. J Oncol Pharm Pract. 2006;12(3):131–41.

    CAS  PubMed  Google Scholar 

  101. Lassere Y, Hoff P. Management of hand-foot syndrome in patients treated with capecitabine (Xeloda®). Eur J Oncol Nurs. 2004;8:S31–40.

    PubMed  Google Scholar 

  102. Labianca R, Beretta G, Clerici M, Fraschini P, Luporini G. Cardiac toxicity of 5-fluorouracil: a study on 1083 patients. Tumori J. 1982;68(6):505–10.

    CAS  Google Scholar 

  103. Jensen SA, Sørensen JB. Risk factors and prevention of cardiotoxicity induced by 5-fluorouracil or capecitabine. Cancer Chemother Pharmacol. 2006;58(4):487–93.

    CAS  PubMed  Google Scholar 

  104. Akhtar SS, Salim KP, Bano ZA. Symptomatic cardiotoxicity with high-dose 5-fluorouracil infusion: a prospective study. Oncology. 1993;50(6):441–4.

    CAS  PubMed  Google Scholar 

  105. Koca D, Salman T, Unek IT, Oztop I, Ellidokuz H, Eren M, et al. Clinical and electrocardiography changes in patients treated with capecitabine. Chemotherapy. 2011;57(5):381–7.

    CAS  PubMed  Google Scholar 

  106. Saif MW, Shah MM, Shah AR. Fluoropyrimidine-associated cardiotoxicity: revisited. Expert Opin Drug Saf. 2009;8(2):191–202.

    CAS  PubMed  Google Scholar 

  107. Kelly C, Bhuva N, Harrison M, Buckley A, Saunders M. Use of raltitrexed as an alternative to 5-fluorouracil and capecitabine in cancer patients with cardiac history. Eur J Cancer. 2013;49(10):2303–10.

    CAS  PubMed  Google Scholar 

  108. Sorrentino MF. 5-fluorouracil induced cardiotoxicity: review of the literature. Cardiol J. 2012;19:453–8.

    PubMed  Google Scholar 

  109. Rezkalla S, Kloner RA, Ensley J, Al-Sarraf M, Revels S, Olivenstein A, et al. Continuous ambulatory ECG monitoring during fluorouracil therapy: a prospective study. J Clin Oncol. 1989;7(4):509–14.

    CAS  PubMed  Google Scholar 

  110. Anand AJ. Fluorouracil cardiotoxicity. Ann Pharmacother. 1994;28(3):374–8.

    CAS  PubMed  Google Scholar 

  111. Polk A, Vistisen K, Vaage-Nilsen M, Nielsen DL. A systematic review of the pathophysiology of 5-fluorouracil-induced cardiotoxicity. BMC Pharmacol Toxicol. 2014;15(1):47.

    PubMed  PubMed Central  Google Scholar 

  112. Robben NC, Pippas AW, Moore JO. The syndrome of 5-fluorouracil cardiotoxicity. An elusive cardiopathy. Cancer. 1993;71(2):493–509.

    CAS  PubMed  Google Scholar 

  113. Fontanella C, Aita M, Cinausero M, Aprile G, Baldin MG, Dusi V, et al. Capecitabine-induced cardiotoxicity: more evidence or clinical approaches to protect the patients’ heart? Onco Targets Ther. 2014;7:1783–01.

    PubMed  PubMed Central  Google Scholar 

  114. Kosmas C, Kallistratos MS, Kopterides P, Syrios J, Skopelitis H, Mylonakis N, et al. Cardiotoxicity of fluoropyrimidines in different schedules of administration: a prospective study. J Cancer Res Clin Oncol. 2008;134(1):75–82.

    CAS  PubMed  Google Scholar 

  115. Trotti A, Byhardt R, Stetz J, Gwede C, Corn B, Fu K, et al. Common toxicity criteria: version 2.0. An improved reference for grading the acute effects of cancer treatment: impact on radiotherapy. Int J Radiat Oncol Biol Phys. 2000;47(1):13–47.

    CAS  PubMed  Google Scholar 

  116. Ducreux M, Bennouna J, Hebbar M, Ychou M, Lledo G, Conroy T, et al. Capecitabine plus oxaliplatin (XELOX) versus 5-fluorouracil/leucovorin plus oxaliplatin (FOLFOX-6) as first-line treatment for metastatic colorectal cancer. Int J Cancer. 2011;128(3):682–90.

    CAS  PubMed  Google Scholar 

  117. Mercier C, Ciccolini J. Severe or lethal toxicities upon capecitabine intake: is DPYD genetic polymorphism the ideal culprit? Trends Pharmacol Sci. 2007;28(12):597–8.

    CAS  PubMed  Google Scholar 

  118. Moore DH, Fowler WC Jr, Crumpler LS. 5-Fluorouracil neurotoxicity. Gynecol Oncol. 1990;36(1):152–4.

    CAS  PubMed  Google Scholar 

  119. Cordier P-Y, Nau A, Ciccolini J, Oliver M, Mercier C, Lacarelle B, et al. 5-FU-induced neurotoxicity in cancer patients with profound DPD deficiency syndrome: a report of two cases. Cancer Chemother Pharmacol. 2011;68(3):823–6.

    CAS  PubMed  Google Scholar 

  120. Formica V, Leary A, Cunningham D, Chua YJ. 5-Fluorouracil can cross brain-blood barrier and cause encephalopathy: should we expect the same from capecitabine? A case report on capecitabine-induced central neurotoxicity progressing to coma. Cancer Chemother Pharmacol. 2006;58(2):276–8.

    CAS  PubMed  Google Scholar 

  121. Couch LS, Groteluschen DL, Stewart JA, Mulkerin DL. Capecitabine-related neurotoxicity presenting as trismus. Clin Colorectal Cancer. 2003;3(2):121–3.

    PubMed  Google Scholar 

  122. Abbott JD, Curtis JP, Murad K, Kramer HM, Remetz MS, Setaro JF, et al. Spontaneous coronary artery dissection in a woman receiving 5-fluorouracil: a case report. Angiology. 2003;54(6):721–4.

    PubMed  Google Scholar 

  123. De Forni M, Malet-Martino MC, Jaillais P, Shubinski R, Bachaud J, Lemaire L, et al. Cardiotoxicity of high-dose continuous infusion fluorouracil: a prospective clinical study. J Clin Oncol. 1992;10(11):1795–801.

    PubMed  Google Scholar 

  124. Dalzell JR, Samuel LM. The spectrum of 5-fluorouracil cardiotoxicity. Anti-Cancer Drugs. 2009;20(1):79–80.

    CAS  PubMed  Google Scholar 

  125. Eskilsson J, Albertsson M. Failure of preventing 5-fluorouracil cardiotoxicity by prophylactic treatment with verapamil. Acta Oncol. 1990;29(8):1001–3.

    CAS  PubMed  Google Scholar 

  126. Vistoguard (uridine triacetate) oral granules [package insert]. West Conshohocken: Wellstat Therapeutics Corporation; 2015.

    Google Scholar 

  127. Andreica IW, Pfeifer E, Rozov M, Tavares E, Shakurova A, Ortiz T. Fluorouracil overdose: clinical manifestations and comprehensive management during and after hospitalization. J Hematol Oncol Pharm. 2015;5(2):43–7.

    Google Scholar 

  128. Smith TJ, Bohlke K, Lyman GH, Carson KR, Crawford J, Cross SJ, et al. Recommendations for the use of WBC growth factors: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2015;33(28):3199–212.

    CAS  PubMed  Google Scholar 

  129. Ezzeldin H, Diasio R. Dihydropyrimidine dehydrogenase deficiency, a pharmacogenetic syndrome associated with potentially life-threatening toxicity following 5-fluorouracil administration. Clin Colorectal Cancer. 2004;4(3):181–9.

    CAS  PubMed  Google Scholar 

  130. Saif MW, Diasio RB. Benefit of uridine triacetate (Vistogard) in rescuing severe 5-fluorouracil toxicity in patients with dihydropyrimidine dehydrogenase (DPYD) deficiency. Cancer Chemother Pharmacol. 2016;78(1):151–6.

    CAS  PubMed  Google Scholar 

  131. Santos C, Morgan BW, Geller RJ. The successful treatment of 5-fluorouracil (5-FU) overdose in a patient with malignancy and HIV/AIDS with uridine triacetate. Am J Emerg Med. 2017;35(5):802 e7–e8.

    Google Scholar 

  132. Vaudo CE, Gil B, Galuski K, Zarwan C, Nugent FW. Early-onset 5-fluorouracil toxicity in a patient negative for dihydropyrimidine dehydrogenase mutations: the clinical course of reversal with uridine triacetate. Pharmacotherapy. 2016;36(11):e178–e82.

    CAS  PubMed  Google Scholar 

  133. Lo LL, Lingaratnam S, Rowe C, Phillips KA. 239 An Australian experience of the use of uridine triacetate (Vistogard) antidote for severe capecitabine toxicity–a case report. In: Proceedings of COSA’s 43rd and ANZBCTG’s 38th Annual Scientific Meetings: Partners for Progress in Breast Cancer Research and Care, Queensland, Australia, Nov 2016. Asia Pac J Clin Oncol. 2016;12(Suppl 5):239. https://onlinelibrary.wiley.com/toc/17437563/2016/12/S5.

    Google Scholar 

  134. Dart RC, Stark Y, Fulton B, Koziol-McLain J, Lowenstein SR. Insufficient stocking of poisoning antidotes in hospital pharmacies. JAMA. 1996;276(18):1508–10.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neumann, N.R., Hoyte, C.O. (2021). Fluorouracil or Capecitabine Overdose. In: Todd, K.H., Thomas, Jr., C.R., Alagappan, K. (eds) Oncologic Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-67123-5_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67123-5_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67122-8

  • Online ISBN: 978-3-030-67123-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics