Skip to main content

Blockchains and the Commons

  • Conference paper
  • First Online:
Networked Systems (NETYS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 12129))

Included in the following conference series:

  • 451 Accesses

Abstract

Blockchain phenomena is similar to the last century gold rush. Blockchain technologies are publicized as being the technical solution for fully decentralizing activities that were for centuries centralized such as administration and banking. Therefore, prominent socio-economical actors all over the world are attracted and ready to invest in these technologies. Despite their large publicity, blockchains are far from being a technology ready to be used in critical economical applications and scientists multiply their effort in warning about the risks of using this technology before understanding and fully mastering it. That is, a blockchain technology evolves in a complex environment where rational and irrational behaviors are melted with faults and attacks. This position paper advocates that the theoretical foundations of blockchains should be a cross research between classical distributed systems, distributed cryptography, self-organized micro-economies, game theory and formal methods. We discuss in the following a set of open research directions interesting in this context.

This position paper is based on the homonymous ERC Advanced submission [71]. It is assumed that the reader has some background knowledge on Blockchain technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Transaction is used here as a generic name to be adapted to a broad class of use cases. For example, a transaction in Bitcoin [63] or Ethereum [76] can be a transfer of digital money or assets.

References

  1. Blockchain.io (Your gateway to the internet of value). https://blockchain.io/. Accessed 10 January 2020

  2. Cosmos: A network of distributed ledgers. https://cosmos.network/cosmos-whitepaper.pdf. Accessed 10 January 2020

  3. Decred cross-chain atomic swapping. https://github.com/decred/atomicswap. Accessed 10 January 2020

  4. Komodo (Advanced blockchain technology, focused on freedom). https://docs.komodoplatform.com/whitepaper/introduction.html. Accessed 10 January 2020

  5. Komodo barterdex. https://github.com/KomodoPlatform/BarterDEX. Accessed 10 January 2020

  6. Polkadot: Vision for a heterogeneous multi-chain framework. https://polkadot.network/PolkaDotPaper.pdf. Accessed 10 January 2020

  7. Abraham, I., Alvisi, L., Halpern, J.: Distributed computing meets game theory: combining insights from two fields. SIGACT News 42, 69–76 (2011)

    Article  Google Scholar 

  8. Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed computing meets game theory: robust mechanisms for rational secret sharing and multiparty computation. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed Computing, PODC 2006, New York, NY, USA, pp. 53–62. Association for Computing Machinery (2006)

    Google Scholar 

  9. Abraham, I., Gueta, G., Malkhi, D.: Hot-stuff the linear, optimal-resilience, one-message BFT devil. CoRR https://arxiv.org/abs/1803.05069 (2018)

  10. Aiyer, A.S., Alvisi, L., Bazzi, R.A.: Byzantine and multi-writer k-quorums. In: Proceedings of 20th International Symposium on Distributed Computing, DISC 2006, 18–20 September 2006, Stockholm, Sweden, pp. 443–458 (2006)

    Google Scholar 

  11. Aiyer, A.S., Alvisi, L., Clement, A., Dahlin, M., Martin, J.P., Porth, C.: BAR fault tolerance for cooperative services. In: SOSP 2005 (2005)

    Google Scholar 

  12. Amoussou-Guenou, Y., Biais, B., Potop-Butucaru, M., Tucci Piergiovanni, S.: Rationals vs byzantines in consensus-based blockchains. https://arxiv.org/abs/1902.07895 (2019). To appear AAMAS 2020

  13. Anceaume, E., Gradinariu, M., Ravoaja, A.: Incentives for P2P fair resource sharing. In: Fifth IEEE International Conference on Peer-to-Peer Computing (P2P 2005), 31 August–2 September 2005, Konstanz, Germany, pp. 253–260 (2005)

    Google Scholar 

  14. Anceaume, E., Pozzo, A.D., Ludinard, R., Potop-Butucaru, M., Tucci Piergiovanni, S.: Blockchain abstract data type. In: Proceedings of the 31st ACM Symposium on Parallelism in Algorithms and Architectures (SPAA) (2019)

    Google Scholar 

  15. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, EuroSys 2018, 23–26 April 2018, Porto, Portugal, pp. 30:1–30:15 (2018)

    Google Scholar 

  16. Anta, A.F., Georgiou, C., Nicolaou, N.C.: Atomic appends: selling cars and coordinating armies with multiple distributed ledgers. CoRR https://arxiv.org/abs/1812.08446 (2018)

  17. Anta, A.F., Konwar, K., Georgiou, C., Nicolaou, N.: Formalizing and implementing distributed ledger objects. ACM SIGACT News 49(2), 58–76 (2018)

    Article  MathSciNet  Google Scholar 

  18. Anta, A.F., Konwar, K.M., Georgiou, C., Nicolaou, N.C.: Formalizing and implementing distributed ledger objects. SIGACT News 49(2), 58–76 (2018)

    Article  MathSciNet  Google Scholar 

  19. Attiya, H., Welch, J.: Distributed Computing: Fundamentals Simulations and Advanced Topics. Wiley, New York (2004)

    Book  Google Scholar 

  20. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. Dependable Secure Comput. 1(1), 11–33 (2014)

    Article  Google Scholar 

  21. Banu, N., Souissi, S., Izumi, T., Wada, K.: An improved byzantine agreement algorithm for synchronous systems with mobile faults. Int. J. Comput. Appl. 43(22), 1–7 (2012)

    Google Scholar 

  22. Belotti, M., Moretti, S., Potop-Butucaru, M., Secci, S.: Game theoretical analysis of atomic cross-chain swaps. In: 40th IEEE International Conference on Distributed Computing Systems (ICDCS), Singapore, December 2020

    Google Scholar 

  23. Bentov, I., Pass, R., Shi, E.: The sleepy model of consensus. IACR Cryptol. ePrint Arch. 2016, 918 (2016)

    Google Scholar 

  24. Biais, B., Bisière, C., Bouvard, M., Casamatta, C.: The blockchain folk theorem. Rev. Financ. Stud. 32(5), 1662–1715 (2019)

    Article  Google Scholar 

  25. Blin, L., Dolev, S., Potop-Butucaru, M.G., Rovedakis, S.: Fast self-stabilizing minimum spanning tree construction - using compact nearest common ancestor labeling scheme. In: Proceedings of 24th International Symposium on Distributed Computing, DISC 2010, 13–15 September 2010, Cambridge, MA, USA, pp. 480–494 (2010)

    Google Scholar 

  26. Blin, L., Potop-Butucaru, M., Rovedakis, S.: A super-stabilizing log(n)log(n)-approximation algorithm for dynamic Steiner trees. Theor. Comput. Sci. 500, 90–112 (2013)

    Article  Google Scholar 

  27. Blin, L., Potop-Butucaru, M., Rovedakis, S., Tixeuil, S.: A new self-stabilizing minimum spanning tree construction with loop-free property. Comput. J. 59(2), 225–243 (2016)

    Article  MathSciNet  Google Scholar 

  28. Blin, L., Potop-Butucaru, M.G., Rovedakis, S.: Self-stabilizing minimum degree spanning tree within one from the optimal degree. J. Parallel Distrib. Comput. 71(3), 438–449 (2011)

    Article  Google Scholar 

  29. Bonnet, F., Défago, X., Nguyen, T.D., Potop-Butucaru, M.: Tight bound on mobile byzantine agreement. Theor. Comput. Sci. 609, 361–373 (2016)

    Article  MathSciNet  Google Scholar 

  30. Bonomi, S., Dolev, S., Potop-Butucaru, M., Raynal, M.: Stabilizing server-based storage in byzantine asynchronous message-passing systems: extended abstract. In: Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, 21–23 July 2015, Donostia-San Sebastián, Spain, pp. 471–479 (2015)

    Google Scholar 

  31. Bonomi, S., Potop-Butucaru, M., Tixeuil, S.: Stabilizing byzantine-fault tolerant storage. In: 2015 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2015, 25–29 May 2015, Hyderabad, India, pp. 894–903 (2015)

    Google Scholar 

  32. Bonomi, S., Pozzo, A.D., Potop-Butucaru, M.: Tight self-stabilizing mobile byzantine-tolerant atomic register. In: Proceedings of the 17th International Conference on Distributed Computing and Networking, 4–7 January 2016, Singapore, pp. 6:1–6:10 (2016). To appear in TCS 2017

    Google Scholar 

  33. Bonomi, S., Pozzo, A.D., Potop-Butucaru, M., Tixeuil, S.: Approximate agreement under mobile byzantine faults. In: 36th IEEE International Conference on Distributed Computing Systems, ICDCS 2016, 27–30 June 2016, Nara, Japan, pp. 727–728 (2016)

    Google Scholar 

  34. Bonomi, S., Pozzo, A.D., Potop-Butucaru, M., Tixeuil, S.: Optimal mobile byzantine fault tolerant distributed storage: extended abstract. In: Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016, 25–28 July 2016, Chicago, IL, USA, pp. 269–278 (2016)

    Google Scholar 

  35. Bonomi, S., Pozzo, A.D., Potop-Butucaru, M., Tixeuil, S.: Self-stabilizing mobile byzantine-tolerant regular register with bounded timestamp. In: SRDS 2017, https://arxiv.org/abs/1609.02694 (2016)

  36. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus. arXiv preprint arXiv:1807.04938 (2018)

  37. Buhrman, H., Garay, J.A., Hoepman, J.H.: Optimal resiliency against mobile faults. In: Proceedings of the 25th International Symposium on Fault-Tolerant Computing (FTCS 1995), pp. 83–88 (1995)

    Google Scholar 

  38. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery. ACM Trans. Comput. Syst. 20(4), 398–461 (2002)

    Article  Google Scholar 

  39. Chen, J., Micali, S.: Algorand. arXiv preprint arXiv:1607.01341 (2017)

  40. Cholvi, V., Anta, A.F., Georgiou, C., Nicolaou, N.C.: Brief announcement: implementing byzantine tolerant distributed ledger objects. In: Suomela, J. (ed.) 33rd International Symposium on Distributed Computing, DISC 2019, 14–18 October 2019, Budapest, Hungary, vol. 146 of LIPIcs, pp. 40:1–40:3. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

    Google Scholar 

  41. Crain, T., Gramoli, V., Larrea, M., Raynal, M.: DBFT: Efficient byzantine consensus with a weak coordinator and its application to consortium blockchains. arXiv preprint arXiv:1702.03068 (2017)

  42. Crain, T., Gramoli, V., Larrea, M., Raynal, M.: (Leader/Randomization/Signature)-free Byzantine Consensus for Consortium Blockchains. http://csrg.redbellyblockchain.io/doc/ConsensusRedBellyBlockchain.pdf (2017). Accessed 22 May 2018

  43. Croman, K.: On scaling decentralized blockchains - (A position paper). In: Financial Cryptography and Data Security - FC 2016 International Workshops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados, February 26, 2016, Revised Selected Papers, pp. 106–125 (2016)

    Google Scholar 

  44. Pass, D.R., Shi, E.: Snow white: provably secure proofs of stake. IACR Cryptol. ePrint Arch. 2016, 919 (2016)

    Google Scholar 

  45. Decker, C., Seidel, J., Wattenhofer, R.: Bitcoin meets strong consistency. In: Proceedings of the 17th International Conference on Distributed Computing and Networking Conference (ICDCN) (2016)

    Google Scholar 

  46. Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-NG: a scalable blockchain protocol. In: 13th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2016, 16–18 March 2016, Santa Clara, CA, USA, pp. 45–59 (2016)

    Google Scholar 

  47. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_28

    Chapter  Google Scholar 

  48. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM (JACM) 32(2), 374–382 (1985)

    Article  MathSciNet  Google Scholar 

  49. Garay, J.A.: Reaching (and maintaining) agreement in the presence of mobile faults. In: Proceedings of the 8th International Workshop on Distributed Algorithms, vol. 857, pp. 253–264 (1994)

    Google Scholar 

  50. Garay, J.A., Kiayias, A.: SoK: a consensus taxonomy in the blockchain era. IACR Cryptol. ePrint Arch. 2018, 754 (2018)

    MATH  Google Scholar 

  51. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_10

    Chapter  Google Scholar 

  52. Girault, A., Gössler, G., Guerraoui, R., Hamza, J., Seredinschi, D.-A.: Monotonic prefix consistency in distributed systems. In: Baier, C., Caires, L. (eds.) FORTE 2018. LNCS, vol. 10854, pp. 41–57. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92612-4_3

    Chapter  Google Scholar 

  53. Golan-Gueta, G., et al.: SBFT: a scalable decentralized trust infrastructure for blockchains. CoRR https://arxiv.org/abs/1804.01626 (2018)

  54. Gotsman, A., Yang, H., Ferreira, C., Najafzadeh, M., Shapiro, M.: ‘Cause i’m strong enough: reasoning about consistency choices in distributed systems. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, 20–22 January 2016, St. Petersburg, FL, USA, pp. 371–384 (2016)

    Google Scholar 

  55. Herlihy, M.: Atomic cross-chain swaps. In: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, pp. 245–254. ACM (2018)

    Google Scholar 

  56. Hess, C., Ostrom, E.: Understanding knowledge as a commons. From theory to Practice (2007)

    Google Scholar 

  57. Izumi, T., Potop-Butucaru, M., Valero, M.: When expanders help self-healing distributed r-tree overlays. In: IEEE 12th International Symposium on Parallel and Distributed Computing, ISPDC 2013, 27–30 June 2013, Bucharest, Romania, pp. 143–150 (2013)

    Google Scholar 

  58. Kokoris-Kogias, E., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: Enhancing bitcoin security and performance with strong consistency via collective signing. In: Proceedings of the 25th USENIX Security Symposium (2016)

    Google Scholar 

  59. Lamport, L.: On inter-process communications, Part I: basic formalism and Part II: algorithms. Distrib. Comput. 1(2), 77–101 (1986)

    Article  Google Scholar 

  60. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Prog. Lang. Syst. 4(3), 382–401 (1982)

    Article  Google Scholar 

  61. Lewis, P., Bernstein, A., Kifer, M.: Databases and Transaction Processing: An Application-Oriented Approach. Addison-Wesley Reading, Boston (2002)

    Book  Google Scholar 

  62. Micali, S.: Algorand: the efficient and democratic ledger. arXiv preprint arXiv:1607.01341 (2016)

  63. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://bitcoin.org/bitcoin.pdf

  64. Nolan, T.: Re: alt chains and atomic transfers. https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949. Accessed 10 January 2020

  65. Ostrom, E.: Governing the Commons. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  66. Ostrom, E., Walker, J.: Trust and Reciprocity: Interdisciplinary Lessons for Experimental Research. Russell Sage Foundation, New York (2003)

    Google Scholar 

  67. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended abstract). In: Proceedings of the 10th Annual ACM Symposium on Principles of Distributed Computing (PODC 1991), pp. 51–59 (1991)

    Google Scholar 

  68. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_22

    Chapter  MATH  Google Scholar 

  69. Pass, R., Shi, E.: Fruitchains: a fair blockchain. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC 2017, 25–27 July 2017, Washington, DC, USA, pp. 315–324 (2017)

    Google Scholar 

  70. Poon, J., Dryja, T.: The bitcoin lightning network (2016). https://lightning.network/lightning-network-paper.pdf

  71. Potop-Butucaru, M.: Brace: Blockchains and the commons. submitted to ERC Advanced program (2017) Proposal ID : 788886 (Internal reference number: SEP-210446727) Call : ERC-2017-ADG Type of action : ERC-ADG Topic : ERC-2017-ADG. http://pagesperso.lip6.fr/Maria.Gradinariu/spip.php?article23

  72. Prihodko, P., Zhigulin, S., Sahno, M., Ostrovskiy, A.: Flare: an approach to routing in lightning network white paper (2016)

    Google Scholar 

  73. Reischuk, R.: A new solution for the byzantine generals problem. Inf. Control 64(1–3), 23–42 (1985)

    Article  MathSciNet  Google Scholar 

  74. Saleh, F.: Blockchain Without Waste: Proof-of-Stake. SSRN Scholarly Paper ID 3183935, Social Science Research Network, Rochester, NY, January 2019

    Google Scholar 

  75. Sasaki, T., Yamauchi, Y., Kijima, S., Yamashita, M.: Mobile byzantine agreement on arbitrary network. In: Baldoni, R., Nisse, N., van Steen, M. (eds.) OPODIS 2013. LNCS, vol. 8304, pp. 236–250. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03850-6_17

    Chapter  Google Scholar 

  76. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. http://gavwood.com/Paper.pdf. Accessed 22 May 2018

  77. Zakhary, V., Agrawal, D., Abbadi, A.: Atomic commitment across blockchains. Proc. VLDB Endow. (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Potop-Butucaru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Potop-Butucaru, M. (2021). Blockchains and the Commons. In: Georgiou, C., Majumdar, R. (eds) Networked Systems. NETYS 2020. Lecture Notes in Computer Science(), vol 12129. Springer, Cham. https://doi.org/10.1007/978-3-030-67087-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67087-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67086-3

  • Online ISBN: 978-3-030-67087-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics