Skip to main content

On HPC and Cloud Environments Integration

  • Chapter
  • First Online:
Performance Evaluation Models for Distributed Service Networks

Abstract

Recently in many scientific disciplines, e.g. physics, chemistry, biology and multidisciplinary research have shifted to computational modelling. The main instrument for such numerical experiments has been supercomputing. However, the number of supercomputers and their performance grows significantly slower than the growth of user’s demands. As a result, users of supercomputers may wait for weeks until their job will be done. At the same time the computational power of cloud computing recently grows up considerably represented by heterogeneous DC network with plenty of available resources for numerical experiments. In these circumstances, it may turn out that the time spent by the task in the system, i.e. the time spent in the queue \(+\) computing time, in the cloud environment may be shorter than in HPC installation. There are several problems related to cloud and supercomputer environments integration. First, is how to make a decision where to send a computational task: to a supercomputer or to cloud. Secondly, these environments may have significantly different APIs, so moving a computational task from one environment to another may require a lot of code modification. Another significant problem is an automatic provisioning of virtual environment to execute the task properly. The third one is how to organize effectively migration data, computational tasks, applications and services in DC network, between DC and HPC installation? Saying effectively, we mean that network can allocate shortly, on demand, the necessary capacity in order to transfer the necessary amount of data for the right time. It is called ‘Capacity on Demand’ service. In this chapter an environment for academic multidisciplinary research – Meta Cloud Computing Environment (MC2E) is presented. This environment demonstrates the possible solutions and approaches to the problems listed above.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meuer, H., et al.: The Top500 project. [Online] Available: http://www.top500.org/ [Accessed: 01-Nov-2019]

  2. Kranzlmüller, D., de Lucas, J.M., Öster, P.: The european grid initiative (EGI). In: Remote Instrumentation and Virtual Laboratories, pp. 61–66. Springer, Boston, MA (2010)

    Google Scholar 

  3. Telecommunications market research that’s data-driven, TeleGeography. [Online] Available: https://www.telegeography.com/ [Accessed: 01-Nov-2019]

  4. Sefraoui, O., Aissaoui, M., Eleuldj, M.: OpenStack: toward an open-source solution for cloud computing. Int. J. Comput. Appl. 55(3), 38–42 (2012)

    Google Scholar 

  5. VMWare products. [Online] Available: https://www.vmware.com/products.html [Accessed: 01-Nov-2019]

  6. Hwang, T.: NSF GENI cloud enabled architecture for distributed scientific computing. In: 2017 IEEE Aerospace Conference, pp. 1–8. IEEE (2017)

    Google Scholar 

  7. Baldin, I., Nikolich, A., Griffioen, J., Monga, I., Wang, K.-C., Lehman, T., Ruth, P.: FABRIC: a national-scaleprogrammable experimentalnetwork infrastructure. IEEE Internet Comput. 23 (2020)

    Google Scholar 

  8. Dewar, R.G., MacKinnon, L.M., Pooley, R.J., Smith, A.D., Smith, M.J., Wilcox, P.A.: The OPHELIA project: supporting software development in a distributed environment. In: ICWI, pp. 568–571 (2002)

    Google Scholar 

  9. Fed4Fire project. [Online] Available: https://www.fed4fire.eu/the-project/ [Accessed: 01-Nov-2019]

  10. Grossman, R.L., Gu, Y., Mambretti, J., Sabala, M., Szalay, A., White, K.: An overview of the open science data cloud. In: Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, pp. 377–384. ACM (2010)

    Google Scholar 

  11. Bal, H.E., Bhoedjang, R., Hofman, R., Jacobs, C., Langendoen, K., Rühl, T., Kaashoek, M.F.: Performance evaluation of the Orca shared-object system. ACM Trans. Comput. Syst. (TOCS) 16(1), 1–40 (1998)

    Article  Google Scholar 

  12. Brun, R., Urban, L., Carminati, F., Giani, S., Maire, M., McPherson, A., Patrick, G., et al.: GEANT: detector description and simulation tool (No. CERN-W-5013). CERN (1993)

    Google Scholar 

  13. Kreutz, D., Ramos, F., Verissimo, P., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey (2014). arXiv:1406.0440

  14. Hawilo, H., Shami, A., Mirahmadi, M., Asal, R.: NFV: State of the art, challenges and implementation in next generation mobile networks (vEPC) (2014). arXiv:1409.4149

  15. Netto, M.A., Calheiros, R.N., Rodrigues, E.R., Cunha, R.L., Buyya, R.: HPC cloud for scientific and business applications: taxonomy, vision, and research challenges. ACM Comput. Surv. (CSUR) 51(1), 8 (2018)

    Article  Google Scholar 

  16. Gupta, A., Faraboschi, P., Gioachin, F., Kale, L.V., Kaufmann, R., Lee, B.S., Suen, C.H.: Evaluating and improving the performance and scheduling of HPC applications in cloud. IEEE Trans. Cloud Comput. 4(3), 307–321 (2016)

    Google Scholar 

  17. Gupta, A., Milojicic, D.: Evaluation of hpc applications on cloud. In: 2011 Sixth Open Cirrus Summit, pp. 22–26. IEEE (2011)

    Google Scholar 

  18. Infiniband in supercomputer systems. [Online] Available: https://www.businesswire.com/news/home/20181112005379/en/Mellanox-InfiniBand-Ethernet-Solutions-Accelerate-Majority-TOP500 [Accessed: 01-Nov-2019]

  19. Gigabit Ethernet in supercomputer systems. [Online] Available: https://www.mellanox.com/solutions/high-performance-computing/top500.php [Accessed: 01-Nov-2019]

  20. NAS Parallel Benchmarks. [Online] Available: https://www.nas.nasa.gov/publications/npb.html [Accessed: 01-Nov-2019]

  21. Goyal, T., Singh, A., Agrawal, A.: Cloudsim: simulator for cloud computing infrastructure and modeling. Procedia Eng. 38, 3566–3572 (2012)

    Article  Google Scholar 

  22. Prabhakaran, A., Lakshmi J.: Cost-benefit analysis of public clouds for offloading in-house HPC jobs. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), San Francisco, CA, pp. 57–64 (2018)

    Google Scholar 

  23. Perf Linux utility. [Online] Available: https://perf.wiki.kernel.org/index.php/Main_Page [Accessed: 01-Nov-2019]

  24. Netstat Linux utility. [Online] Available: https://linux.die.net/man/8/netstat [Accessed: 01-Nov-2019]

  25. Traffic control Linux utility. [Online] Available: https://linux.die.net/man/8/tc [Accessed: 01-Nov-2019]

  26. Böhme, Thomas., Göring, Frank, Harant, Jochen: Menger’s theorem. J. Graph Theory 37(1), 35–36 (2001)

    Article  MathSciNet  Google Scholar 

  27. Stepanov, E., Smeliansky, R.: On analysis of traffic flow demultiplexing effectiveness. In: 2018 International Scientific and Technical Conference Modern Computer Network Technologies (MoNeTeC). IEEE (2018)

    Google Scholar 

  28. Kukreja, N., Maier, G., Alvizu, R., Pattavina, A.: SDN based automated testbed for evaluating multipath TCP. In: IEEE International Conference on Communication, ICC 2015, London, United Kingdom, June 8–12, 2015, Workshop Proceedings, pp. 718–723 (2016)

    Google Scholar 

  29. Awduche, D., et al.: RSVP-TE: extensions to RSVP for LSP tunnels (2001). [Irawati_2017] Irawati, I.D., Hadiyoso, S., Hariyani, Y.S.: Link aggregation control protocol on software defined network. Int. J. Electrical Comput. Eng. 7(5), 2706 (2017)

    Google Scholar 

  30. Raiciu, C., Paasch, C., Barre, S., Ford, A., Honda, M., Duchene, F., Bonaventure, O., Handley, M.: How hard can it be? Designing and implementing a deployable multipath tcp. In: Presented as part of the 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 12), pp. 399–412. San Jose, CA, USENIX (2012)

    Google Scholar 

  31. Chemeritskiy, Evgeny., Stepanov, Evgeny, Smeliansky, Ruslan: Managing network resources with flow (de) multiplexing protocol. Math. Comput. Methods Electr. Eng. 53, 35–43 (2015)

    Google Scholar 

  32. Chiesa, Marco., Kindler, Guy, Schapira, Michael: Traffic engineering with equal-cost-multipath: an algorithmic perspective. IEEE/ACM Trans. Netw. (TON) 25(2), 779–792 (2017)

    Article  Google Scholar 

  33. Awduche, D., Malcolm, J., Agogbua, J., O’Dell, M., McManus, J.: Requirements for Traffic Engineering Over MPLS, RFC 2702, Sep. (1999)

    Google Scholar 

  34. Irawati, I.D., Hadiyoso, S., Hariyani, Y.S.: Link aggregation control protocol on software defined network. Int. J. Electr. Comput. Eng. 7(5), 2706 (2017)

    Google Scholar 

  35. Dilmore, M., Doufexi, A., Oikonomou, G.: Analysing interface bonding in 5G WLANs. In: 2018 IEEE 23rd International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). IEEE (2018)

    Google Scholar 

  36. Bernstein, G.M.: IP bandwidth on demand and traffic engineering via multi-layer transport networks. In: 2006 IEEE First International Workshop on Bandwidth on Demand. IEEE (2006)

    Google Scholar 

  37. Bertsekas, Dimitri P., Gallager, Robert G., Humblet, Pierre: Data Networks, vol. 2. Prentice-Hall International, New Jersey (1992)

    MATH  Google Scholar 

  38. Mahimkar, A., Chiu, A., Doverspike, R., Feuer, M.D., Magill, P., Mavrogiorgis, E., Yates, J., et al.: Bandwidth on demand for inter-data center communication. In: Proceedings of the 10th ACM Workshop on Hot Topics in Networks, p. 24. ACM (2011)

    Google Scholar 

  39. ETSI NFV MANO Specification. [Online] Available: https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf [Accessed: 01-Nov-2019]

  40. Zabbix, S.I.A.: Zabbix. The Enterprise-class Monitoring Solution for Everyone (2014)

    Google Scholar 

  41. Barth, W.: Nagios: System and network monitoring. No Starch Press (2008)

    Google Scholar 

  42. Coffman, E.G.: Computer and Job-shop Scheduling Theory. Wiley (1976)

    Google Scholar 

  43. Martello, S., Toth, P.: Knapsack problems. ?. 221. Wiley (1990)

    Google Scholar 

  44. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by Russian Ministry of Science and Higher Education, grant #05.613.21.0088, unique ID RFMEFI61318X0088 and the National Key R&D Program of China (2017YFE0123600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruslan Smeliansky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Antonenko, V., Chupakhin, A., Kolosov, A., Smeliansky, R., Stepanov, E. (2021). On HPC and Cloud Environments Integration. In: Bocewicz, G., Pempera, J., Toporkov, V. (eds) Performance Evaluation Models for Distributed Service Networks. Studies in Systems, Decision and Control, vol 343. Springer, Cham. https://doi.org/10.1007/978-3-030-67063-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67063-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67062-7

  • Online ISBN: 978-3-030-67063-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics