Skip to main content

An Experience of Teaching Advanced Control Engineering (ACE) for Postgraduate Students

  • Conference paper
  • First Online:
Learning Technologies and Systems (SETE 2020, ICWL 2020)

Abstract

Control engineering is a key engineering discipline to design systems with desired behaviors in control environments. Its application area is so vast that many fields of engineering students are taught the course. This paper presents the experience of teaching advanced control engineering for postgraduate students of mechanical engineering. It presents the methodologies employed by the instructors while they teach the course. It discusses the presented methodologies in comparison with the established principles of best teaching methodologies. This paper pinpoint student’s lack of concentration or attention as the major problem associated with the existing teaching methods. Hence, a flexible teaching method such as online learning or hybrid learning was proposed to engage and motivate students’ initiative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kozák, S.: Advanced control engineering methods in modern technological applications. In: International Carpathian Control Conference (ICCC), pp. 392–397. IEEE (2012). https://doi.org/10.1109/CarpathianCC.2012.6228674

  2. Precup, R.E., Preitl, S., et al.: Experiment-based teaching in advanced control engineering. IEEE Trans. Educ. 54(3), 345–355 (2011). https://doi.org/10.1109/TE.2010.2058575

  3. Zenger, K.: Challenges and new directions in control engineering education. In: Proceedings of the 9th EUROSIM Congress on Modelling and Simulation (EUROSIM 2016) and the 57th SIMS Conference on Simulation and Modelling (SIMS 2016), pp. 819–823. University Electronic Press, Linköping (2018). https://doi.org/10.3384/ecp17142819

  4. Miller, A.S., Singhose, W., Glauser, U.: Integrating PLC theory and programming into advanced controls courses. In: Proceedings of the American Control Conference (ACC), pp. 7302–7307. IEEE (2016). https://doi.org/10.1109/acc.2016.7526825

  5. Dittmar, R., Kahlcke, T.: A lab for undergraduate control engineering education equipped with industrial distributed control systems. Comput. Appl. Eng. Educ. 24(2), 288–296 (2015). https://doi.org/10.1002/cae.21708

    Article  Google Scholar 

  6. Jwaid, A.E., Clark, S., Ireson, G.: Understanding best practices in control engineering education using the concept of TPACK. In: 2014 IEEE Integrated STEM Education Conference. IEEE (2014). https://doi.org/10.1109/isecon.2014.6891027

  7. Ravishankar, J., Epps, J., Ambikairajah, E.: A flipped mode teaching approach for large and advanced electrical engineering courses. Eur. J. Eng. Educ. 43(3), 413–426 (2018). https://doi.org/10.1080/03043797.2017.1383974

    Article  Google Scholar 

  8. Smutny, L., Farana, R.: The consortial approach to advanced control laboratory education. In: Proceedings of the 4th Iasme/Wseas International Conference on Engineering Education, pp. 211–213. WSEAS Press (2007)

    Google Scholar 

  9. Heradio, R., Torre, L., Dormido, S.: Virtual and remote labs in control education: a survey. Ann. Rev. Control 42, 1–10 (2016). https://doi.org/10.1016/j.arcontrol.2016.08.001

    Article  Google Scholar 

  10. Rampazzo, M., Cervato, A., Beghi, A.: Remote refrigeration system experiments for control engineering education. Comput. Appl. Eng. Educ. 25(3), 430–440 (2017). https://doi.org/10.1002/cae.21810

    Article  Google Scholar 

  11. Hu, W., et al.: Plug-in free web-based 3-D interactive laboratory for control engineering education. IEEE Trans. Indu. Electron. 64(5), 3808–3818 (2017). https://doi.org/10.1109/TIE.2016.2645141

    Article  Google Scholar 

  12. Matijevic, M.S., Jovic, N.D., Nedeljkovic, M.S., Cantrak, D.S.: Remote labs and problem oriented engineering education. In: 2017 IEEE Global Engineering Education Conference (EDUCON), pp. 1391–1396, IEEE (2017). https://doi.org/10.1109/EDUCON.2017.7943029

  13. Koehler, M.J., Mishra, P., Cain, W.: What is technological pedagogical content knowledge (TPACK)? J. Educ. 193(3), 13–19 (2013). https://doi.org/10.1177/002205741319300303

    Article  Google Scholar 

  14. Hoernicke, M., Horch, A., Bauer, M.: Industry contribution to control engineering education: an experience of teaching of undergraduate and postgraduate courses. IFAC-PapersOnLine 50(2), 133–138 (2017). https://doi.org/10.1016/j.ifacol.2017.12.025

    Article  Google Scholar 

  15. Rossitera, J.A., et al.: A survey of good practice in control education. Eur. J. Eng. Educ. 43(6), 801–823 (2018). https://doi.org/10.1080/03043797.2018.1428530

    Article  Google Scholar 

  16. Juuso, E.K.: An advanced teaching scheme for integrating problem-based learning in control education. Open Eng. 8(1), 41–49 (2018). https://doi.org/10.1515/eng-2018-0006

    Article  Google Scholar 

  17. Benyo, I., Lipovszki, G., Kovacs, J.: Advanced control: simulation tools in LabVIEW environment. IFAC Proc. 36(10), 237–241 (2003). https://doi.org/10.1016/S1474-6670(17)33686-8

    Article  Google Scholar 

  18. Koku, A.B., Kaynak, O.: An internet-assisted experimental environment suitable for the reinforcement of undergraduate teaching of advanced control techniques. IEEE Trans. Educ. 44(1), 24–28 (2001). https://doi.org/10.1109/13.912706

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by National Natural Science Foundation of China under Grant 51975052.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luzheng Bi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feleke, A.G., Bi, L. (2021). An Experience of Teaching Advanced Control Engineering (ACE) for Postgraduate Students. In: Pang, C., et al. Learning Technologies and Systems. SETE ICWL 2020 2020. Lecture Notes in Computer Science(), vol 12511. Springer, Cham. https://doi.org/10.1007/978-3-030-66906-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66906-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66905-8

  • Online ISBN: 978-3-030-66906-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics