Skip to main content

Frugivory and Seed Dispersal

  • Chapter
  • First Online:
Plant-Animal Interactions

Abstract

Consumption of fleshy fruits by frugivorous animals, which then disperse the seeds inside, is a key ecological process, particularly in forests. Fruit is an easy food to consume but is nutritionally dilute so specialist frugivores need adaptations for efficient location, harvest, and digestion. High dependence on fleshy fruits has evolved in many bird and mammal groups, as well as some reptiles and fish, and consumption by different animals can have widely different consequences for plant fitness. Plants can choose among frugivores by evolving physical (size, color etc.) and chemical traits that match corresponding frugivore traits, but there is little evidence for reciprocal co-evolution. Seed dispersal networks show similar characteristics to other ecological interaction networks, including great variation in how many interactions each species is involved in, a modular structure in which groups of species interact mostly with each other, and nestedness, so specialists interact mostly with generalists. Dependence of seed dispersal on vertebrates makes it vulnerable to human impacts, including hunting, and habitat clearance, fragmentation, and degradation. Larger vertebrates, which consume larger fruits and disperse more seeds longer distances, are most vulnerable and have been widely eliminated, reducing the ability of plant populations to respond to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert-Daviaud A, Buerki S, Onjalalaina GE et al (2020) The ghost fruits of Madagascar: identifying dysfunctional seed dispersal in Madagascar's endemic flora. Biol Conserv 242:108438

    Article  Google Scholar 

  • Albrecht J, Hagge J, Schabo DG et al (2018) Reward regulation in plant-frugivore networks requires only weak cues. Nat Commun 9:4838

    Article  Google Scholar 

  • Araujo JM, Correa SB, Anderson J, Penha J (2020) Fruit preferences by fishes in a Neotropical floodplain. Biotropica 52:1131–1141

    Google Scholar 

  • Aronne G, Wilcock CC (1994) First evidence of myrmechochory in fleshy-fruited shrubs in the Mediterranean region. New Phytol 127:781–788

    Article  Google Scholar 

  • Bairlein F (2002) How to get fat: nutritional mechanisms of seasonal fat accumulation in migratory songbirds. Naturwissenschaften 89:1–10

    Article  Google Scholar 

  • Baldwin JW, Dechmann DKN, Thies W, Whitehead SR (2020) Defensive fruit metabolites obstruct seed dispersal by altering bat behavior and physiology at multiple temporal scales. Ecology 101(2):e02937

    Article  Google Scholar 

  • Baltzinger C, Karimi S, Shukla U (2019) Plants on the move: hitch-hiking with ungulates distributes diaspores across landscapes. Front Ecol Evol 7:38

    Google Scholar 

  • Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on Earth. Proc Natl Acad Sci U S A 115:6506–6511

    Article  Google Scholar 

  • Barve S, La Sorte FA (2016) Fruiting season length restricts global distribution of female-only parental care in frugivorous passerine birds. Plos One 11:e0154871

    Article  Google Scholar 

  • Bender IMA, Kissling WD, Blendinger PG et al (2018) Morphological trait matching shapes plant-frugivore networks across the Andes. Ecography 41:1910–1919

    Article  Google Scholar 

  • Benítez-López A, Alkemade R, Schipper AM et al (2017) The impact of hunting on tropical mammal and bird populations. Science 356:180–183

    Article  Google Scholar 

  • Bosenbecker C, Bugoni L (2020) Trophic niche similarities of sympatric Turdus thrushes determined by fecal contents, stable isotopes, and bipartite network approaches. Ecol Evol 10:9073–9084

    Article  Google Scholar 

  • Brancalion PHS, Novembre A, Rodrigues RR, Marcos J (2010) Dormancy as exaptation to protect mimetic seeds against deterioration before dispersal. Ann Bot 105:991–998

    Article  Google Scholar 

  • Bravo SP, Cueto VR (2020) Directed seed dispersal: the case of howler monkey latrines. Perspectives in Plant Ecology Evolution and Systematics 42:125509

    Article  Google Scholar 

  • Brito-Morales I, Molinos JG, Schoeman DS et al (2018) Climate velocity can inform conservation in a warming world. Trends Ecol Evol 33:441–457

    Article  Google Scholar 

  • Bunney K, Bond WJ, Henley M (2017) Seed dispersal kernel of the largest surviving megaherbivore-the African savanna elephant. Biotropica 49:395–401

    Article  Google Scholar 

  • Calvino-Cancela M, Rubido-Bará M (2012) Effects of seed passage through slugs on germination. Plant Ecol 213:663–673

    Article  Google Scholar 

  • Campos-Arceiz A, Blake S (2011) Megagardeners of the forest - the role of elephants in seed dispersal. Acta Oecol 37:542–553

    Article  Google Scholar 

  • Case SB, Tarwater CE (2020) Functional traits of avian frugivores have shifted following species extinction and introduction in the Hawaiian Islands. Funct Ecol 12:2467–2476

    Google Scholar 

  • Cazetta E, Schaefer HM, Galetti M (2008) Does attraction to frugivores or defense against pathogens shape fruit pulp composition? Oecologia 155:277–286

    Article  Google Scholar 

  • Chen SC, Cornwell WK, Zhang HX, Moles AT (2017) Plants show more flesh in the tropics: variation in fruit type along latitudinal and climatic gradients. Ecography 40:531–538

    Article  Google Scholar 

  • Chen L-j, Hou Y-m, Yin P-f, Wang X (2020b) An edible fruit from the Jurassic of China. China Geol 3:8–15

    Google Scholar 

  • Chen SC, Poschlod P, Antonelli A et al (2020a) Trade-off between seed dispersal in space and time. Ecol Lett 23:1635–1642

    Google Scholar 

  • Clause J, Forey E, Eisenhauer N et al (2017) Seed selection by earthworms: chemical seed properties matter more than morphological traits. Plant and Soil 413:97–110

    Article  Google Scholar 

  • Corlett RT (1998) Frugivory and seed dispersal by vertebrates in the Oriental (Indomalayan) Region. Biol Rev 73:413–448

    Article  Google Scholar 

  • Corlett RT (2011a) How to be a frugivore (in a changing world). Acta Oecol 37:674–681

    Google Scholar 

  • Corlett RT (2011b) Seed dispersal in Hong Kong, China: past, present and possible futures. Integr Zool 6:97–109

    Article  Google Scholar 

  • Corlett RT (2017) Frugivory and seed dispersal by vertebrates in tropical and subtropical Asia: an update. Glob Ecol Conserv 11:1–22

    Article  Google Scholar 

  • Corlett RT (2019) The ecology of tropical East Asia. Oxford University Press, Oxford, UK

    Book  Google Scholar 

  • Corlett RT, Primack RB (2011) Tropical rain forests: an ecological and biogeographical comparison, 2nd edn. Wiley-Blackwell, Oxford, UK

    Book  Google Scholar 

  • Corlett RT, Westcott DA (2013) Will plant movements keep up with climate change? Trends Ecol Evol 28:482–488

    Article  Google Scholar 

  • Corlett RT, Leven MR, Yong DL, Eaton JA, Round PA (2020) Continental analysis of invasive birds: Asia. In: Downs CT, Hart LA (eds) Invasive birds: global trends and impacts. CABI, Wallingford, UK, pp 315–340

    Google Scholar 

  • Correa SB, Costa-Pereira R, Fleming T et al (2015) Neotropical fish-fruit interactions: eco-evolutionary dynamics and conservation. Biol Rev 90:1263–1278

    Article  Google Scholar 

  • Costa-Pereira R, Correa SB, Galetti M (2018) Fishing-down within populations harms seed dispersal mutualism. Biotropica 50:319–325

    Article  Google Scholar 

  • Crestani AC, Mello MAR, Cazetta E (2019) Interindividual variations in plant and fruit traits affect the structure of a plant-frugivore network. Acta Oecol 95:120–127

    Google Scholar 

  • Culot L, Huynen MC, Heymann EW (2018) Primates and dung beetles: two dispersers are better than one in secondary forest. Int J Primatol 39:397–414

    Article  Google Scholar 

  • da Silva HR, de Britto-Pereira MC (2006) How much fruit do fruit-eating frogs eat? An investigation on the diet of Xenohyla truncata (Lissamphibia: Anura: Hylidae). J Zool 270:692–698

    Google Scholar 

  • da Silva BG, Silva WR (2020) Impacts of park roads and trails on a community of Atlantic Forest fruit-eating birds. Trop Ecol 61:371–386

    Article  Google Scholar 

  • de Vega C, Arista M, Ortiz PL et al (2011) Endozoochory by beetles: a novel seed dispersal mechanism. Ann Bot 107:629–637

    Article  Google Scholar 

  • Delibes M, Castañeda I, Fedriani JM (2019) Spitting seeds from the cud: a review of an endozoochory exclusive to ruminants. Front Ecol Evol 7:265

    Google Scholar 

  • do Nascimento LF, Guimãraes PR, Onstein RE et al (2020) Associated evolution of fruit size, fruit colour and spines in Neotropical palms. J Evol Biol 33:858–868

    Article  Google Scholar 

  • Donati G, Santini L, Eppley TM et al (2017) Low levels of fruit nitrogen as drivers for the evolution of Madagascar's primate communities. Sci Rep 7:14406

    Article  Google Scholar 

  • Duan Q, Goodale E, Quan RC (2014) Bird fruit preferences match the frequency of fruit colours in tropical Asia. Sci Rep 4:5627

    Article  Google Scholar 

  • Epstein JH, Olival KJ, Pulliam JRC et al (2009) Pteropus vampyrus, a hunted migratory species with a multinational home-range and a need for regional management. J Appl Ecol 46:991–1002

    Google Scholar 

  • Eriksson O (2016) Evolution of angiosperm seed disperser mutualisms: the timing of origins and their consequences for coevolutionary interactions between angiosperms and frugivores. Biol Rev 91:168–186

    Article  Google Scholar 

  • Falcón W, Moll D, Hansen DM (2020) Frugivory and seed dispersal by chelonians: a review and synthesis. Biol Rev 95:142–166

    Article  Google Scholar 

  • Fricke EC, Svenning JC (2020) Accelerating homogenization of the global plant-frugivore meta-network. Nature 585:74−78

    Google Scholar 

  • Fricke EC, Simon MJ, Reagan KM et al (2013) When condition trumps location: seed consumption by fruit-eating birds removes pathogens and predator attractants. Ecol Lett 16:1031–1036

    Article  Google Scholar 

  • Galetti M, Guevara R, Côrtes MC et al (2013) Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340:1086–1090

    Article  Google Scholar 

  • Galetti M, Moleón M, Jordano P et al (2018) Ecological and evolutionary legacy of megafauna extinctions. Biol Rev 93:845–862

    Article  Google Scholar 

  • Hardus ME, de Vries H, Dellatore DF et al (2013) Socioecological correlates of inter-individual variation in orangutan diets at Ketambe, Sumatra. Behav Ecol Sociobiol 67:429–437

    Article  Google Scholar 

  • Harrison S, Noss R (2017) Endemism hotspots are linked to stable climatic refugia. Ann Bot 119:207–214

    Article  Google Scholar 

  • Harrison RD, Tan S, Plotkin JB et al (2013) Consequences of defaunation for a tropical tree community. Ecol Lett 16:687–694

    Article  Google Scholar 

  • Herrera CM (2002) Correlated evolution of fruit and leaf size in bird-dispersed plants: species-level variance in fruit traits explained a bit further? Oikos 97:426–432

    Article  Google Scholar 

  • Hooper ER, Ashton MS (2020) Fragmentation reduces community-wide taxonomic and functional diversity of dispersed tree seeds in the Central Amazon. Ecol Appl 30:e02093

    Article  Google Scholar 

  • Horn MH, Correa SB, Parolin P et al (2011) Seed dispersal by fishes in tropical and temperate fresh waters: the growing evidence. Acta Oecol 37:561–577

    Article  Google Scholar 

  • Janzen DH (1984) Dispersal of small seeds by big herbivores - foliage is the fruit. Am Nat 123:338–353

    Article  Google Scholar 

  • John EA, Soldati F, Burman OHP et al (2016) Plant ecology meets animal cognition: impacts of animal memory on seed dispersal. Plant Ecol 217:1441–1456

    Article  Google Scholar 

  • Jordano P (2017) What is long-distance dispersal? And a taxonomy of dispersal events. J Ecol 105:75–84

    Article  Google Scholar 

  • Kerches-Rogeri P, Niebuhr BB, Muylaert RL, Mello MAR (2020) Individual specialization in the use of space by frugivorous bats. J Anim Ecol 89(11):2584–2595

    Article  Google Scholar 

  • King P, Milicich L, Burns KC (2011) Body size determines rates of seed dispersal by giant king crickets. Popul Ecol 53:73–80

    Article  Google Scholar 

  • Kleyheeg E, Fiedler W, Safi K et al (2019) A comprehensive model for the quantitative estimation of seed dispersal by migratory mallards. Front Ecol Evol 7:40

    Google Scholar 

  • Ko IWP, Corlett RT, Xu RJ (1998) Sugar composition of wild fruits in Hong Kong, China. J Trop Ecol 14:381–387

    Article  Google Scholar 

  • Kozlowski CP, Vickerman E, Sahrmann J et al (2016) Parent-offspring behavior of Jambu fruit doves (Ptilinopus jambu). Zoo Biol 35:120–127

    Google Scholar 

  • Kuprewicz EK, García-Robledo C (2019) Deciphering seed dispersal decisions: size, not tannin content, drives seed fate and survival in a tropical forest. Ecosphere 10:e02551

    Article  Google Scholar 

  • Larsen H, Burns KC (2012) Seed dispersal effectiveness increases with body size in New Zealand alpine scree weta (Deinacrida connectens). Austral Ecol 37:800–806

    Google Scholar 

  • Levey DJ, Bissell HA, O’Keefe SF (2000) Conversion of nitrogen to protein and amino acids in wild fruits. J Chem Ecol 26:1749–1763

    Article  Google Scholar 

  • Lim JY, Svenning J-C, Göldel B et al (2020) Frugivore-fruit size relationships between palms and mammals reveal past and future defaunation impacts. Nat Commun 11:4904

    Article  Google Scholar 

  • Lohaus G, Schwerdtfeger M (2014) Comparison of sugars, iridoid glycosides and amino acids in nectar and phloem sap of Maurandya barclayana, Lophospermum erubescens, and Brassica napus. Plos One 9:e87689

    Google Scholar 

  • Lomáscolo SB, Levey DJ, Kimball RT et al (2010) Dispersers shape fruit diversity in Ficus (Moraceae). Proc Natl Acad Sci U S A 107:14668–14672

    Article  Google Scholar 

  • Longland WS, Dimitri LA (2016) Are western juniper seeds dispersed through diplochory? Northwest Sci 90:235–244

    Article  Google Scholar 

  • MacFarlane AET, Kelly D, Briskie JV (2016) Introduced blackbirds and song thrushes: useful substitutes for lost mid-sized native frugivores, or weed vectors? N Z J Ecol 40:80–87

    Google Scholar 

  • Mariani MS, Ren ZM, Bascompte J, Tessone CJ (2019) Nestedness in complex networks: observation, emergence, and implications. Phys Rep 813:1–90

    Article  Google Scholar 

  • McConkey KR (2018) Seed dispersal by primates in Asian habitats: from species, to communities, to conservation. Int J Primatol 39:466–492

    Article  Google Scholar 

  • Middleton R, Sinnott-Armstrong M, Ogawa Y et al (2020) Viburnum tinus fruits use lipids to produce metallic blue structural color. Curr Biol 30:3804–3810

    Article  Google Scholar 

  • Miller MF (1996) Dispersal of Acacia seeds by ungulates and ostriches in an African savanna. J Trop Ecol 12:345–356

    Article  Google Scholar 

  • Moermond TC, Denslow JJ (1985) Neotropical avian frugivores: patterns of behavior, morphology, and nutrition with consequences for fruit selection. Ornithol Monogr 36:865–897

    Article  Google Scholar 

  • Morán-López T, Carlo TA, Amico G, Morales JM (2018) Diet complementation as a frequency-dependent mechanism conferring advantages to rare plants via dispersal. Funct Ecol 32:2310–2320

    Article  Google Scholar 

  • Moreno SA, Gelambi M, Biganzoli A, Molinari J (2019) Small nutrient molecules in fruit fuel efficient digestion and mutualism with plants in frugivorous bats. Sci Rep 9:19376

    Article  Google Scholar 

  • Naves ER, Silva LD, Sulpice R et al (2019) Capsaicinoids: pungency beyond capsicum. Trends Plant Sci 24:109–120

    Article  Google Scholar 

  • Oliveros CH, Field DJ, Ksepka DT et al (2019) Earth history and the passerine superradiation. Proc Natl Acad Sci U S A 116:7916–7925

    Article  Google Scholar 

  • Onstein RE, Kissling WD, Chatrou LW et al (2019) Which frugivory-related traits facilitated historical long-distance dispersal in the custard apple family (Annonaceae)? J Biogeogr 46:1874–1888

    Article  Google Scholar 

  • Orlowski G, Czarnecka J, Golawski A et al (2016) The effectiveness of endozoochory in three avian seed predators. J Ornithol 157:61–73

    Article  Google Scholar 

  • Orr TJ, Ortega J, Medellin RA et al (2016) Diet choice in frugivorous bats: gourmets or operational pragmatists? J Mammal 97:1578–1588

    Article  Google Scholar 

  • Passos L, Oliveira PS (2002) Ants affect the distribution and performance of seedlings of Clusia criuva, a primarily bird-dispersed rain forest tree. J Ecol 90:517–528

    Google Scholar 

  • Payrató-Borràs C, Hernández L, Moreno Y (2019) Breaking the spell of nestedness: the entropic origin of nestedness in mutualistic systems. Phys Rev X 9:031024

    Google Scholar 

  • Pérez-Méndez N, Jordano P, García C, Valido A (2016) The signatures of Anthropocene defaunation: cascading effects of the seed dispersal collapse. Sci Rep 6:24820

    Article  Google Scholar 

  • Pires LP, de Melo C (2020) Individual-resource networks reveal distinct fruit preferences of selective individuals from a generalist population of the Helmeted Manakin. Ibis 162:713–722

    Article  Google Scholar 

  • Pizo MA, Fontanella ABA, Canassa G et al (2020) Decoding Darwin's puzzle: avian dispersal of mimetic seeds. Ecology 101:e03005

    Article  Google Scholar 

  • Rafferty NE, CaraDonna PJ, Bronstein JL (2015) Phenological shifts and the fate of mutualisms. Oikos 124:14–21

    Article  Google Scholar 

  • Ramos-Robles M, Dattilo W, Díaz-Castelazo C, Andresen E (2018) Fruit traits and temporal abundance shape plant-frugivore interaction networks in a seasonal tropical forest. Sci Nat 105:29

    Article  Google Scholar 

  • Randhawa N, Bird BH, VanWormer E et al (2020) Fruit bats in flight: a look into the movements of the ecologically important Eidolon helvum in Tanzania. One Health Outlook 2:16

    Article  Google Scholar 

  • Rija AA, Critchlow R, Thomas CD, Beale CM (2020) Global extent and drivers of mammal population declines in protected areas under illegal hunting pressure. PloS One 15:e0227163

    Article  Google Scholar 

  • Rogers HS, Beckman NG, Hartig F et al (2019) The total dispersal kernel: a review and future directions. AoB Plants 11:plz042

    Article  Google Scholar 

  • Rossberg AG (2020) What are the fundamental questions regarding evolution in ecological networks? Trends Ecol Evol 35:863–865

    Article  Google Scholar 

  • Sagoff M (2020) Ecological networks: response to Segar et al. Trends Ecol Evol 35:862–863

    Article  Google Scholar 

  • Salgado L, Canudo JI, Garrido AC et al (2017) A new primitive Neornithischian dinosaur from the Jurassic of Patagonia with gut contents. Sci Rep 7:42778

    Article  Google Scholar 

  • Sandel B, Arge L, Dalsgaard B et al (2011) The influence of Late Quaternary climate-change velocity on species endemism. Science 334:660–664

    Article  Google Scholar 

  • Schneiberg I, Boscolo D, Devoto M et al (2020) Urbanization homogenizes the interactions of plant-frugivore bird networks. Urban Ecosyst 23:457–470

    Article  Google Scholar 

  • Schupp EW, Jordano P, Gómez JM (2010) Seed dispersal effectiveness revisited: a conceptual review. New Phytol 188:333–353

    Article  Google Scholar 

  • Segar ST, Fayle TM, Srivastava DS et al (2020a) The role of evolution in shaping ecological networks. Trends Ecol Evol 35:454–466

    Article  Google Scholar 

  • Segar ST, Fayle TM, Srivastava DS et al (2020b) On the perils of ignoring evolution in networks. Trends Ecol Evol 35:865–866

    Article  Google Scholar 

  • Shilton LA, Altringham JD, Compton SG, Whittaker RJ (1999) Old World fruit bats can be long-distance seed dispersers through extended retention of viable seeds in the gut. Proc R Soc B Biol Sci 266:219–223

    Article  Google Scholar 

  • Simmons BI, Sutherland WJ, Dicks LV et al (2018) Moving from frugivory to seed dispersal: incorporating the functional outcomes of interactions in plant-frugivore networks. J Anim Ecol 87:995–1007

    Article  Google Scholar 

  • Sinnott-Armstrong MA, Lee C, Clement WL, Donoghue MJ (2020) Fruit syndromes in Viburnum: correlated evolution of color, nutritional content, and morphology in bird-dispersed fleshy fruits. BMC Evol Biol 20:7

    Google Scholar 

  • Skalníková P, Frynta D, Abramjan A et al (2020) Spontaneous color preferences in rhesus monkeys: what is the advantage of primate trichromacy? Behav Processes 174:104084

    Article  Google Scholar 

  • Sorensen MC, Donoso I, Neuschulz EL et al (2020) Community-wide seed dispersal distances peak at low levels of specialisation in size-structured networks. Oikos 11:1727–1738

    Google Scholar 

  • Stiles EW (1993) The influence of pulp lipids on fruit preference by birds. Vegetatio 108:227–235

    Article  Google Scholar 

  • Stournaras KE, Prum RO, Schaefer HM (2015) Fruit advertisement strategies in two Neotropical plant-seed disperser markets. Evol Ecol 29:489–509

    Article  Google Scholar 

  • Stringer SD, Hill RA, Swanepoel L et al (2020) Assessing the role of a mammalian frugivorous species on seed germination potential depends on study design: a case study using wild samango monkeys. Acta Oecol 106:103584

    Article  Google Scholar 

  • Suetsugu K (2018a) Seed dispersal in the mycoheterotrophic orchid Yoania japonica: further evidence for endozoochory by camel crickets. Plant Biol 20:707–712

    Article  Google Scholar 

  • Suetsugu K (2018b) Independent recruitment of a novel seed dispersal system by camel crickets in achlorophyllous plants. New Phytol 217:828–835

    Article  Google Scholar 

  • Suetsugu K (2020) A novel seed dispersal mode of Apostasia nipponica could provide some clues to the early evolution of the seed dispersal system in Orchidaceae. Evol Lett 4:457–464

    Google Scholar 

  • Swamy V, Terborgh J, Dexter KG et al (2011) Are all seeds equal? Spatially explicit comparisons of seed fall and sapling recruitment in a tropical forest. Ecol Lett 14:195–201

    Article  Google Scholar 

  • Tang AMC, Corlett RT, Hyde KD (2005) The persistence of ripe fleshy fruits in the presence and absence of frugivores. Oecologia 142:232–237

    Article  Google Scholar 

  • Thibault M, Masse F, Pujapujane A et al (2018) “Liaisons dangereuses”: the invasive red-vented bulbul (Pycnonotus cafer), a disperser of exotic plant species in New Caledonia. Ecol Evol 8:9259–9269

    Google Scholar 

  • Thomas DW, Bosque C, Arends A (1993) Development of thermoregulation and the energetics of nestling oilbirds (Steatornis caripensis). Physiol Zool 66:322–348

    Google Scholar 

  • Tiffney BH (2004) Vertebrate dispersal of seed plants through time. Annu Rev Ecol Evol Syst 35:1–29

    Article  Google Scholar 

  • Troisi CA, Hoppitt WJE, Ruiz-Miranda CR, Laland KN (2020) The role of food transfers in wild golden lion tamarins ( Leontopithecus rosalia): support for the informational and nutritional hypothesis. Primates 62:207–221

    Google Scholar 

  • Türke M, Andreas K, Gossner MM et al (2012) Are gastropods, rather than ants, important dispersers of seeds of myrmecochorous forest herbs? Am Nat 179:124–131

    Article  Google Scholar 

  • Uehara Y, Sugiura N (2017) Cockroach-mediated seed dispersal in Monotropastrum humile (Ericaceae): a new mutualistic mechanism. Bot J Linn Soc 185:113–118

    Google Scholar 

  • Valdovinos FS (2019) Mutualistic networks: moving closer to a predictive theory. Ecol Lett 22:1517–1534

    Article  Google Scholar 

  • Valenta K, Nevo O (2020) The dispersal syndrome hypothesis: how animals shaped fruit traits, and how they did not. Funct Ecol 34:1158–1169

    Article  Google Scholar 

  • Valenta K, Daegling DJ, Nevo O et al (2020) Fruit selectivity in anthropoid primates: size matters. Int J Primatol 41:525–537

    Article  Google Scholar 

  • Valido A, Olesen JM (2019) Frugivory and seed dispersal by lizards: a global review. Front Ecol Evol 7:49

    Article  Google Scholar 

  • Vander Wall SB, Longland WS (2004) Diplochory: are two seed dispersers better than one? Trends Ecol Evol 19:155–161

    Article  Google Scholar 

  • Vandoros JD, Dumont ER (2004) Use of the wings in manipulative and suspensory behaviors during feeding by frugivorous bats. J Exp Zool A Ecol Integr Physiol 301A:361–366

    Google Scholar 

  • Vázquez DP, Morris WF, Jordano P (2005) Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecol Lett 8:1088–1094

    Article  Google Scholar 

  • Viana DS, Santamaria L, Figuerola J (2016) Migratory birds as global dispersal vectors. Trends Ecol Evol 31:763–775

    Article  Google Scholar 

  • Vizentin-Bugoni J, Tarwater CE, Foster JT et al (2019) Structure, spatial dynamics, and stability of novel seed dispersal mutualistic networks in Hawai'i. Science 364:78–7+

    Article  Google Scholar 

  • Vogel ER, Knott CD, Crowley BE et al (2012) Bornean orangutans on the brink of protein bankruptcy. Biol Lett 8:333–336

    Article  Google Scholar 

  • Wang ZX, Sun FK, Wang JD et al (2019) New fossil leaves and fruits of Lauraceae from the Middle Miocene of Fujian, southeastern China differentiated using a cluster analysis. Hist Biol 31:581–599

    Article  Google Scholar 

  • Wang K, Tian SL, Galindo-Gonzalez J et al (2020a) Molecular adaptation and convergent evolution of frugivory in Old World and neotropical fruit bats. Mol Ecol 29(22):4366–4381

    Article  Google Scholar 

  • Wang ZY, Wang B, Yan C et al (2020b) Neighborhood effects on the tannin-related foraging decisions of two rodent species under semi-natural conditions. Integr Zool 15(6):569–577

    Article  Google Scholar 

  • Welbergen JA, Meade J, Field HE et al (2020) Extreme mobility of the world's largest flying mammals creates key challenges for management and conservation. BMC Biol 18:101

    Article  Google Scholar 

  • Wenny DG (2001) Advantages of seed dispersal: a re-evaluation of directed dispersal. Evol Ecol Res 3:51–74

    Google Scholar 

  • Wong ST, Servheen C, Ambu L, Norhayati A (2005) Impacts of fruit production cycles on Malayan sun bears and bearded pigs in lowland tropical forest of Sabah, Malaysian Borneo. J Trop Ecol 21:627–639

    Article  Google Scholar 

  • Wright SJ, Carrasco C, Calderon O, Paton S (1999) The El Niño Southern Oscillation variable fruit production, and famine in a tropical forest. Ecology 80:1632–1647

    Google Scholar 

  • Xiang YZ, Huang CH, Hu Y et al (2017) Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. Mol Biol Evol 34:262–281

    Google Scholar 

  • Yao X, Song Y, Yang JB et al (2021) Phylogeny and biogeography of the hollies (Ilex L., Aquifoliaceae). J Syst Evol 59:73–82

    Google Scholar 

  • Zungu MM, Downs CT (2016) Digestive efficiencies of Cape white-eyes (Zosterops virens), red-winged starlings (Onychognathus morio) and speckled mousebirds (Colius striatus) fed varying concentrations of equicaloric glucose or sucrose artificial fruit diets. Comp Biochem Physiol A Mol Integr Physiol 199:28–37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard T. Corlett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Corlett, R.T. (2021). Frugivory and Seed Dispersal. In: Del-Claro, K., Torezan-Silingardi, H.M. (eds) Plant-Animal Interactions. Springer, Cham. https://doi.org/10.1007/978-3-030-66877-8_7

Download citation

Publish with us

Policies and ethics