Skip to main content

The Gift That Keeps on Giving: Why Does Biological Diversity Accumulate Around Mutualisms?

  • Chapter
  • First Online:
Plant-Animal Interactions

Abstract

It is increasingly apparent that mutualisms are central components of ecological communities, generating linkages among species in ways that lead to rich and persistent assemblages. I propose here an underlying rationale for why biological diversity tends to accumulate around mutualisms. I first highlight four key features of mutualism: most involve one-way or two-way exchange of resources; these resources are commonly used by many different mutualists; as they are difficult or impossible to modulate to mutualists’ needs, there would appear to be an advantage to overproduction; and many species other than mutualists subsist on these resources. As a consequence, I argue, (a) interaction networks form around mutualisms that extend well beyond the mutualists themselves; (b) non-mutualists taking advantage of one species’ resources may often be mutualists of other species in the community; and (c) different mutualistic networks are also linked, because successful mutualisms often generate resources that form the base of yet other mutualisms. I present three examples of plant/pollinator interactions that illustrate how mutualisms contribute to the accumulation of biological diversity in their local habitats. I conclude by offering a set of predictions to move these ideas further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • AlarcĂłn R, Davidowitz G, Bronstein JL (2008) Nectar usage in a southern Arizona hawkmoth community. Ecological Entomology 33:503–509

    Article  Google Scholar 

  • AlarcĂłn R, Riffell JA, Davidowitz G, Hildebrand JG, Bronstein JL (2010) Sex-dependent variation in the floral preferences of a hawkmoth (Manduca sexta). Anim Behav 80:289–296

    Google Scholar 

  • Anstett M-C, Hossaert-McKey M, McKey D (1997) Modeling the persistence of small populations of strongly interdependent species: figs and fig wasps. Conserv Biol 11:204–213

    Article  Google Scholar 

  • Aslan CE, Bronstein JL, Rogers HS, Gedan KB, Brodie J, Palmer TM, Young TP (2016) Leveraging nature’s backup plans to incorporate interspecific interactions and resilience into restoration. Restor Ecol 24:434–440

    Article  Google Scholar 

  • Astegiano J, Massol F, Vidal MM, Cheptou P-O, GuimarĂŁes Jr PR (2015) The robustness of plant-pollinator assemblages: linking plant interaction patterns and sensitivity to pollinator loss. PLoS One 10(2):e0117243

    Google Scholar 

  • Astegiano J, Altermatt F, Massol F (2017) Disentangling the co-structure of multilayer interaction networks: degree distribution and module composition in two-layer bipartite networks. Sci Rep 7:15465

    Article  Google Scholar 

  • Aubier TG, Elias M (2020) Positive and negative interactions jointly determine the structure of MĂĽllerian mimetic communities. Oikos 129:983–997

    Article  Google Scholar 

  • Barker JL, Bronstein JL (2016) Temporal structure in cooperative interactions: what does the timing of exploitation tell us about its cost? PLoS Biol 14:e1002371

    Article  Google Scholar 

  • Barnard CJ (1984) Producers and scroungers: strategies of exploitation and parasitism. Chapman and Hall, New York

    Book  Google Scholar 

  • Bascompte J, Jordano P (2014) Mutualistic networks. Princeton University Press, Princeton

    Google Scholar 

  • Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant-animal mutualistic networks. Proceed Nat Acad Sci USA 100:9383–9387

    Article  Google Scholar 

  • Bennett AE, Bever JD (2009) Trade-offs between arbuscular mycorrhizal fungal competitive ability and host growth promotion in Plantagolanceolata. Oecologia 160:807–816

    Google Scholar 

  • BlĂĽthgen N, Menzel F, Hovestadt T, Fiala B (2007) Specialization, constraints, and conflicting interests in mutualistic networks. Curr Biol 17:341–346

    Article  Google Scholar 

  • Brandenburg A, Kuhlemeier C, Bshary R (2012) Hawkmoth pollinators decrease seed set of a low-nectar Petunia axillaris line through reduced probing time. Curr Biol 22:1635–1639

    Article  Google Scholar 

  • Brodie J, Aslan CE, Rogers HS, Redford KH, Maron JL, Bronstein JL, Groves CR (2014) Secondary extinctions of biodiversity. Trends Ecol Evol 29:664–672

    Article  Google Scholar 

  • Bronstein JL (1988) Predators of fig wasps. Biotropica 20:215–219

    Article  Google Scholar 

  • Bronstein JL (1991) The nonpollinating wasp fauna of Ficus pertusa: exploitation of a mutualism? Oikos 61:175–186

    Google Scholar 

  • Bronstein JL (1992) Seed predators as mutualists: ecology and evolution of the fig/pollinator interaction. In: Bernays E (ed) Insect-plant interactions. Volume IV. CRC Press, Boca Raton, pp 1–44

    Google Scholar 

  • Bronstein JL (1999) The biology of Anidarnes bicolor (Hymenoptera, Agaonidae, Sycophaginae), a galler of Ficus aurea. Florida Entomologist 82:454–461

    Google Scholar 

  • Bronstein JL (2001) The costs of mutualism. Am Zool 41:127–141

    Google Scholar 

  • Bronstein JL (2015) The study of mutualism. In: Bronstein JL (ed) Mutualism. Oxford University Press, New York, pp 3–19

    Chapter  Google Scholar 

  • Bronstein JL, Gouyon PH, Gliddon C, Kjellberg F, Michaloud G (1990) Ecological consequences of flowering asynchrony in monoecious figs: a simulation study. Ecology 71:2145–2156

    Article  Google Scholar 

  • Bronstein JL, Wilson WG, Morris WF (2003) The ecological dynamics of mutualist-exploiter communities. Am Nat 162:S24–S39

    Article  Google Scholar 

  • Bronstein JL, Huxman T, Horvath B, Farabee M, Davidowitz G (2009) Reproductive biology of Datura wrightii: the benefits of associating with an herbivorous pollinator. Ann Bot 103:1435–1443

    Google Scholar 

  • Brooks WR, Gwaltney CL (1993) Protection of symbiotic cnidarians by their hermit crab hosts: evidence of mutualism. Symbiosis 15:1–13

    Google Scholar 

  • Cartar RV (2004) Resource tracking by bumble bees: responses to plant-level differences in quality. Ecology 85:2764–2771

    Article  Google Scholar 

  • Chamberlain SA, Holland JN (2009) Quantitative synthesis of context dependency in ant-plant protection mutualisms. Ecology 90:2384–2392

    Article  Google Scholar 

  • Chamberlain SA, Bronstein JL, Rudgers JA (2014) How context dependent are species interactions? Ecol Lett 17:881–890

    Article  Google Scholar 

  • Chomicki G, Weber M, Antonelli A, Bascompte J, Kiers ET (2019) The impact of mutualisms on species richness. Trends Ecol Evol 34:698–711

    Article  Google Scholar 

  • Chomicki G, Kiers ET, Renner SS (2020) The evolution of mutualistic dependence. Annu Rev. Ecol Evol Syst 51:409–432

    Article  Google Scholar 

  • Cohen D, Shmida A (1993) The evolution of flower display and reward. Evol Biol 27:197–243

    Google Scholar 

  • Crimmins TM, Crimmins MA, Bertelsen CD (2010) Complex responses to climate drivers in onset of spring flowering across a semi-arid elevation gradient. J Ecol 98:1042–1051

    Article  Google Scholar 

  • Duthie AB, Abbott KC, Nason JD (2015) Trade-offs and coexistence in fluctuating environments: evidence for a key dispersal-fecundity trade-off in five nonpollinating fig wasps. Am Nat 186:151–158

    Article  Google Scholar 

  • Eliyahu D, McCall AC, Lauck M, Trakhtenbrot A (2015a) Florivory and nectar-robbing perforations in flowers of pointleaf manzanita Arctostaphylos pungens (Ericaceae) and their effects on plant reproductive success. Arthropod Plant Interact 9:613–622

    Google Scholar 

  • Eliyahu D, McCall AC, Lauck M, Trakhtenbrot A, Bronstein JL (2015b) Minute pollinators: the role of thrips (Thysanoptera) as pollinators of pointleaf manzanita, Arctostaphylos pungens (Ericaceae). J Pollination Ecol 16:64–71

    Google Scholar 

  • Farache FHA, Cruaud A, Rasplus J-Y, Cerezini MT, Rattis L, Kjellberg F, Rereira RAS (2018) Insights into the structure of plant-insect communities: specialism and generalism in a regional set of non-pollinating fig wasp communities. Acta Oecologica 90:49–59

    Google Scholar 

  • Fedriani JM, Delibes M (2013) Pulp feeders alter plant interactions with subsequent animal associates. J Ecol 101:1581–1588

    Article  Google Scholar 

  • Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev. Ecol Evol Syst 35:375–403

    Article  Google Scholar 

  • Fisher RM, Henry LM, Cornwallis CK, Kiers ET, West SA (2017) The evolution of host-symbiont dependence. Nat Commun 8:15973

    Article  Google Scholar 

  • Gange AC, Smith AK (2005) Arbuscularmycorrhizal fungi influence visitation rates of pollinating insects. Ecol Entomol 30:600–606

    Article  Google Scholar 

  • Genini J, Morellato LPC, GuimarĂŁes Jr PR, Olesen JM (2010) Cheaters in mutualism networks. Biol Lett 6(4):494–497

    Google Scholar 

  • Glasier JRN, Poore AGB, Eldridge DJ (2018) Do mutualistic associations have broader host ranges than neutral or antagonistic associations? A test using myrmecophiles as model organisms. Insectes Sociaux 65:639–648

    Article  Google Scholar 

  • Grutter AS, Blomberg SP, Box S, Bshary R, Ho O, Madin EMP, McClure EC, Meekan MG, Murphy JM, Richardson MA, Sikkel PC, Sims CA, Sun D, Warner RR (2019) Changes in local free-living parasite populations in response to cleaner manipulation over 12 years. Oecologia 190:783–797

    Article  Google Scholar 

  • GuimarĂŁes Jr PR, Rico-Gray V, Furtado dos Reis S, Thompson JN (2006) Asymmetries in specialization in ant-plant networks. Proc R Soc Lond Ser B 273:2041–2047

    Google Scholar 

  • Hale KRS, Valdovinos FS, Martinez ND (2020) Mutualism increases diversity, stability, and function of multiplex networks that integrate pollinators into food webs. Nat Commun 11:2182

    Article  Google Scholar 

  • Hanna C, Foote D, Kremen C (2014) Competitive impacts of an invasive nectar thief on plant-pollinator mutualisms. Ecology 95:1622–1632

    Article  Google Scholar 

  • Harrison RD (2000) Repercussions of El Nino: drought causes extinction and the breakdown of mutualism in Borneo. Proc R Soc Lond Ser B-Biol Sci 267:911–915

    Article  Google Scholar 

  • Heath KD, Stinchcombe JR (2013) Explaining mutualism variation: a new evolutionary paradox? Evolution 68:309–317

    Article  Google Scholar 

  • Heil M, Baumann B, Kruger R, Linsenmair K (2004) Main nutrient compounds in food bodies of Mexican Acacia ant-plants. Chemoecology 14:45–52

    Article  Google Scholar 

  • Heil M, Barajas-Barron A, Orona-Tamayo D, Wielsch N, Svatos A (2014) Partner manipulation stabilises a horizontally transmitted mutualism. Ecol Lett 17:185–192

    Article  Google Scholar 

  • Heiling JM, Ledbetter TA, Richman SK, Ellison HK, Bronstein JL, Irwin RE (2018) Why are some plant-nectar robber interactions commensalisms? Oikos 127:1679–1689

    Article  Google Scholar 

  • Herre EA, JandĂ©r KC, Machado CA (2008) Evolutionary ecology of figs and their associates: recent progress and outstanding puzzles. Annu Rev. Ecol Evol Syst 39:439–458

    Article  Google Scholar 

  • Hodges CM (1985) Bumble bee foraging: the threshold departure rule. Ecology 66:179–187

    Article  Google Scholar 

  • Hodges SA (1995) The influence of nectar production on hawkmoth behavior, self pollination, and seed production in Mirabilis multiflora (Nyctaginaceae). Am J Bot 82:197–204

    Article  Google Scholar 

  • Hoeksema JD, Bruna EM (2015) Context-dependent outcomes of mutualistic interactions. In: Bronstein JL (ed) Mutualism. Oxford University Press, New York, pp 181–202

    Chapter  Google Scholar 

  • Hoeksema JD, Schwartz MW (2001) Modeling interspecific mutualisms as biological markets. In: NoĂ« R, van Hooff R, Hammerstein P (eds) Economics in nature: the evolutionary biology of economic behaviour. Cambridge University Press, Cambridge, pp 173–183

    Chapter  Google Scholar 

  • Holland JN, Ness JH, Boyle A, Bronstein JL (2005) Mutualisms as consumer-resource interactions. In: Barbosa P (ed) Ecology of predator-prey interactions. Oxford University Press, Oxford, pp 17–33

    Google Scholar 

  • Holland JN, Chamberlain SA, Horn KC (2009) Optimal defence theory predicts investment in extrafloral nectar resources in an ant-plant mutualism. J Ecol 97:89–96

    Google Scholar 

  • Howe HF (1993) Specialized and generalized dispersal systems: where does “the paradigm” stand? Vegetatio 107(/108):3–13

    Article  Google Scholar 

  • Irwin R, Bronstein JL, Manson J, Richardson LE (2010) Nectar-robbing: ecological and evolutionary perspectives. Annu Rev Ecol Evol Syst 41:271–292

    Article  Google Scholar 

  • Janzen DH (1979) How to be a fig. Annu Rev Ecol Syst 10:13–51

    Article  Google Scholar 

  • Johnson NC (2015) Mutualisms and ecosystem-level processes. In: Bronstein JL (ed) Mutualism. Oxford University Press, New York, pp 221–238

    Chapter  Google Scholar 

  • Johnson CA, Bronstein JL (2019) Coexistence and competitive exclusion in mutualism. Ecology 100:e02708

    Article  Google Scholar 

  • Johnson SD, MorĂ© M, Amorim FW, Haber WA, Frankie GW, Stanley DA, Cocucci AA, Raguso RA (2016) The long and the short of it: a global analysis of hawkmoth pollination niches and interaction networks. Funct Ecol 31:101–115

    Google Scholar 

  • Jones EI, Ferrière R, Bronstein JL (2009) Eco-evolutionary dynamics of mutualists and exploiters. Am Nat 174:780–794

    Article  Google Scholar 

  • Jones EI, Ferrière R, Bronstein JL (2012) The fundamental role of competition in the ecology and evolution of mutualisms. Ann New York Acad Sci 1256:66–88

    Article  Google Scholar 

  • Junker RR, BlĂĽthgen N (2010) Floral scents repel facultative flower visitors, but attract obligate ones. Ann Bot 105:777–782

    Article  Google Scholar 

  • Kato M, Kawakita A (eds) (2017) Obligate pollination mutualism. Ecological research monographs. Springer, Japan

    Google Scholar 

  • KĂ©fi S, Miele V, Wieters EA, Navarrete SA, Berlow EL (2016) How structured is the entangled bank? The surprisingly simple organization of multiplex ecological networks leads to increased persistence and resilience. PLoS Biol 14(8):e1002527

    Google Scholar 

  • Kim W, Gilet T, Bush JWM (2011) Optimal concentrations in nectar feeding. Proc Nat Acad Sci USA 108:16618–16621

    Article  Google Scholar 

  • Klinkhamer PGL, de Jong TJ (1993) Attractiveness to pollinators: a plant’s dilemma. Oikos 66:180–184

    Article  Google Scholar 

  • Koh LP, Dunn RR, Sodhi NS, Colwell RK, Proctor HC, Smith VS (2004) Species coextinctions and the biodiversity crisis. Science 305:1632–1634

    Article  Google Scholar 

  • Krishnan A, Muralidharan S, Sharma L, Borges RM (2010) A hitchhiker’s guide to a crowded syconium: how do fig nematodes find the right ride? Funct Ecol 24:741–749

    Article  Google Scholar 

  • Lee J, Kim T, Choe J (2009) Commensalism or mutualism: conditional outcomes in a branchiobdellid-crayfish symbiosis. Oecologia 159:217–224

    Article  Google Scholar 

  • Lever JJ, van de Leemput IA, Weinans E, Quax R, Dakos V, Bascompte J, Scheffer M (2020) Foreseeing the future of mutualistic communities beyond collapse. Ecol Lett 23:2–15

    Article  Google Scholar 

  • Lichtenberg EM, Heiling JM, Bronstein JL, Barker JL (2020) Noisy communities and signal detection: why do foragers visit rewardless flowers? Philos Trans R Soc Lond B 375:20190486

    Article  Google Scholar 

  • Linsenmair KE, Heil M, Kaiser WM, Fiala B, Koch T, Boland W (2001) Adaptations to biotic and abiotic stress: Macaranga-ant plants optimize investment in biotic defence. J Exp Bot 52:2057–2065

    Article  Google Scholar 

  • McCall AC, Irwin RE (2006) Florivory: the intersection of pollination and herbivory. Ecol Lett 9:1351–1365

    Article  Google Scholar 

  • McCall AC, Richman S, Thomson E, Edgerton M, Jordan S, Bronstein JL (2018) Do honeybees act as pollen thieves or pollinators of Daturawrightii? J Pollination Ecol 24:164–171

    Article  Google Scholar 

  • McCall AC, Davidowitz G, Bronstein JL (2020) How high are the costs inflicted by an herbivorous pollinator? Arthropod Plant Interact 14:387–397

    Article  Google Scholar 

  • McKey D (1989) Population biology of figs: applications for conservation. Experientia 45:661–673

    Article  Google Scholar 

  • Mello MAR, Felix GM, Pinheiro RBP, Muylaert RL, Geiselman C, Santana SE, Tschapka M, Lotfi N, Rodrigues FA, Stevens RD (2019) Insights into the assembly rules of a continent-wide multilayer network. Nat Ecol Evol 3:1525–1532

    Article  Google Scholar 

  • Mesquita-Neto JN, BlĂĽthgen N, Schlindwein C (2018) Flowers with poricidal anthers and their complex interaction networks-disentangling legitimate pollinators and illegitimate visitors. Funct Ecol 32:2321–2332

    Article  Google Scholar 

  • Miranda VA, Navarro PD, Davidowitz G, Bronstein J, Stock SP (2013) Effect of insect host age and diet on the fitness of the entomopathogenic nematode-bacteria mutualism. Symbiosis 61:145–153

    Article  Google Scholar 

  • Moe AM, Rossi DR, Weiblen GD (2011) Pollinator sharing in dioecious figs (Ficus: Moraceae). Biol J Linn Soc 103:546–558

    Article  Google Scholar 

  • Montesinos-Navarro A, Hiraldo F, Tella JL, Blanco G (2018) Network structure embracing mutualism-antagonism continuums increases community robustness. Nat Ecol Evol 1:1661–1669

    Article  Google Scholar 

  • Ness JH, Bressmer K (2005) Abiotic influences on the behaviour of rodents, ants, and plants affect an ant-seed mutualism. Ecoscience 12:76–81

    Article  Google Scholar 

  • NoĂ« R, Hammerstein P (1994) Biological markets: supply and demand determine the effect of partner choice in cooperation, mutualism and mating. Behav Ecol Sociobiol 35:1–11

    Article  Google Scholar 

  • Ohashi K, Yahara T (2001) Behavioral responses of pollinators to variation in floral display size and their influences on the evolution of floral traits. In: Chittka L, Thomson JD (eds) Cognitive ecology of pollination. Cambridge University Press, Cambridge, UK, pp 274–296

    Chapter  Google Scholar 

  • Ollerton J (2006) “Biological barter”: patterns of specialization compared across different mutualisms. In: Waser NM, Ollerton J (eds) Plant-pollinator interactions: from specialization to generalization. University of Chicago Press, Chicago, pp 411–435

    Google Scholar 

  • Ordano M, Ornelas JF (2005) The cost of nectar replenishment in two epiphytic bromeliads. J Trop Ecol 21:541–547

    Article  Google Scholar 

  • Pahua VJ, Stokes PJN, Hollowell AC, Regus JU, Gano-Cohen KA, Wendlandt CE, Quides KW, Lyu JY, Sachs JL (2018) Fitness variation among host species and the paradox of ineffective rhizobia. J Evol Biol 31:599–610

    Article  Google Scholar 

  • Palacio FX, Ordano M (2018) The strength and drivers of bird-mediated selection on fruit crop size: a meta-analysis. Front Ecol Evol 6:18

    Article  Google Scholar 

  • Palmer TM, Doak DF, Stanton ML, Bronstein JL, Kiers ET, Young TP, Goheen JR, Pringle RM (2010) Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualism. Proc Nat Acad USA 107:17234–17239

    Article  Google Scholar 

  • Parachnowitsch AL, Manson JS, Sletvold N (2019) Evolutionary ecology of nectar. Ann Bot 123:247–261

    Article  Google Scholar 

  • Pellmyr O, Thompson JN (1992) Multiple occurrences of mutualism in the yucca moth lineage. Proc Nat Acad Sci USA 89:2927–2929

    Article  Google Scholar 

  • Penn HJ, Crist TO (2018) From dispersal to predation: a global synthesis of ant-seed interactions. Ecol Evol 8:9122–9138

    Google Scholar 

  • Pillai P, Gouhier TC, Vollmer SV (2014) The cryptic role of biodiversity in the emergence of host-microbial mutualisms. Ecol Lett 17:1437–1446

    Article  Google Scholar 

  • Pilosof S, Porter MA, Pascual M, KĂ©fi S (2017) The multilayer nature of ecological networks. Nat Ecol Evol 1:0101

    Google Scholar 

  • Pires MM, O’Donnell JL, Burkle LA, DĂ­az-Castelazo C, Hembry DH, Yeakel JD, Newman EA, Medeiros LP, de Aguiar MAM, GuimarĂŁes PA (2020) The indirect paths to cascading effects of extinctions in mutualistic networks. Ecology 101:e03080

    Article  Google Scholar 

  • Ponisio LC, Gaiarsa MP, Kremen C (2017) Opportunistc attachment assembles plant-pollinator networks. Ecol Lett. 20:1261–1272

    Google Scholar 

  • Pyke GH (1981) Optimal nectar production in a hummingbird pollinated plant. Theor Popul Biol 20:326–343

    Article  Google Scholar 

  • Rafferty NE, CaraDonna PJ, Bronstein JL (2015) Phenological shifts and the fate of mutualisms. Oikos 124:14–21

    Article  Google Scholar 

  • Rafferty NE, Bertelsen CD, Bronstein JL (2016) Later flowering is associated with a compressed flowering season and reduced reproductive output in an early season floral resource. Oikos 125:821–828

    Article  Google Scholar 

  • Renner SS (2006) Rewardless flowers in the angiosperms and the role of insect cognition in their evolution. In: Waser NM, Ollerton J (eds) Plant-pollinator interactions: from specialization to generalization. University of Chicago Press, Chicago, pp 123–144

    Google Scholar 

  • Richardson LL, Bronstein JL (2012) Reproductive biology of pointleaf manzanita (Arctostaphylos pungens) and the pollinator-nectar robber spectrum. J Pollination Ecol 9:115–123

    Google Scholar 

  • Riffell JA, AlarcĂłn R, Abrell L, Davidowitz G, Bronstein JL, Hildebrand JG (2008) Behavioral consequences of innate preferences and olfactory learning in hawkmoth-flower interactions. Proc Nat Acad Sci USA 105:3404–3409

    Article  Google Scholar 

  • RodrĂ­guez-RodrĂ­guez MC, Jordano P, Valido A (2017) Functional consequences of plant-animal interactions along the mutualism-antagonism gradient. Ecology 98:1266–1276

    Article  Google Scholar 

  • Roux O, CĂ©rĂ©ghino R, Solano PJ, Dejean A (2011) Caterpillars and fungal pathogens: two co-occurring parasites of an ant-plant mutualism. PLoS ONE 6:e20538

    Article  Google Scholar 

  • Schupp EW, Jordano P, GĂłmez JM (2017) A general framework for effectiveness concepts in mutualisms. Ecol Lett 20:577–590

    Article  Google Scholar 

  • Schwartz MW, Hoeksema JD (1998) Specialization and resource trade: biological markets as a model of mutualisms. Ecology 79:1029–1038

    Article  Google Scholar 

  • Shanahan M, So S, Compton S, Corlett R (2001) Fig-eating by vertebrate frugivores: a global review. Biol Rev 76:529–572

    Article  Google Scholar 

  • Slauson LA (2000) Pollination biology of two chiropterophilous Agaves in Arizona. Am J Bot 87:825–836

    Article  Google Scholar 

  • Stanton ML (2003) Interacting guilds: moving beyond the pairwise perspective on mutualisms. Am Nat 162:S10–S23

    Article  Google Scholar 

  • Sutton TL, DeGabrieli JL, Riegler M, Cook JM (2017) Local coexistence and genetic isolation of three pollinator species on the same fig tree species. Heredity 118:486–490

    Google Scholar 

  • Sutton TM, Degabriel JL, Riegler M, Cook JM (2018) A temperate pollinator with high thermal tolerance is still susceptible to heat events predicted under future climate change. Ecol Entomol 43:506–512

    Google Scholar 

  • Taylor BN, Simms EL, Komatsu KJ (2020) More than a functional group: diversity within the legume-Rhizobia mutualism and its relationship with ecosystem function. Diversity 12:50

    Google Scholar 

  • Terborgh J (1986) Keystone plant resources in the tropical forest. In: SoulĂ© ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer, Sunderland, pp 330–344

    Google Scholar 

  • Thompson JN (1988) Variation in interspecific interactions. Annu Rev. Ecol Syst 19:65–87

    Article  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Thomson DM (2019) Effects of long-term variation in pollinator abundance and diversity on reproduction of a generalist plant. J Ecol 107:491–502

    Article  Google Scholar 

  • Vannette RL, Hunter MD (2011) Plant defence theory re-examined: nonlinear expectations based on the costs and benefits of resource mutualisms. J Ecol 99:66–76

    Article  Google Scholar 

  • Vázquez DP, Simberloff D (2002) Ecological specialization and susceptibility to disturbance: conjectures and refutations. Am Nat 159:606–623

    Article  Google Scholar 

  • Vidal MC, Sendoya SF, Oliveira PS (2016) Mutualism exploitation: predatory drosophilid larvae sugar-trap ants and jeopardize facultative ant-plant mutualism. Ecology 97:1650–1657

    Article  Google Scholar 

  • von Arx M, Moore A, Davidowitz G, Arnold AE (2019) Diversity and distribution of microbial communities in floral nectar of two night-blooming plants of the Sonoran Desert. PLoS One 14(2):e0225309

    Article  Google Scholar 

  • Wang Y, DeAngelis DL, Holland JN (2012) Uni-directional interaction and plant-pollinator-robber coexistence. Bull Math Biol 74:2142–2164

    Article  Google Scholar 

  • Wang G, Cannon CH, Chen J (2016) Pollinator sharing and gene flow among closely related sympatric dioecious fig taxa. Proc R Soc Lond B 283:20152963

    Google Scholar 

  • Waser NM, Price MV (2016) Drought, pollen and nectar availability, and pollination success. Ecology 97:1400–1409

    Article  Google Scholar 

  • Waser NM, Chittka L, Price MV, Williams NM, Ollerton J (1996) Generalization in pollination systems, and why it matters. Ecology 77:1043–1060

    Article  Google Scholar 

  • Wilson JK, Woods HA (2015) Protection via parasitism: Datura odors attract parasitoid flies, which inhibit Manduca larvae from feeding and growing but may not help plants. Oecologia 179:1159–1171

    Article  Google Scholar 

  • Wilson JK, Woods HA (2016) Innate and learned olfactory responses in a wild population of the egg parasitoid Trichogramma (Hymenoptera: Trichogrammatidae). J Insect Sci 16:110. 111–118

    Article  Google Scholar 

  • Wood TJ, Gibbs J, Graham KK, Isaacs R (2019) Narrow pollen diets are associated with declining Midwestern bumble bee species. Ecology 100:e02697

    Article  Google Scholar 

  • Yule KM, Johnson CA, Bronstein JL, Ferrière R (2020) Interactions among interactions: the dynamical consequences of antagonism between mutualists. J Theor Biol 501:110334

    Google Scholar 

Further Reading/Additional Resources

  • Bronstein JL (ed) Mutualism. Oxford University Press, New York, pp 221–238

    Google Scholar 

  • Blurton Jones NG (1984) A selfish origin for human food sharing: tolerated theft. Ethology and Sociobiology 5:1–3

    Google Scholar 

  • Hoek TA, Axelrod K, Biancalani T, Yurtsev EA, Liu J, Gore J (2016) Resource availability modulates the cooperative and competitive nature of a microbial cross-feeding mutualism. PLoS Biology 14:e1002540

    Google Scholar 

  • Goodale E, Sridhar H, Sieving KE, Bangal P, Z. GJC, Farine DR, Heymann EW, Jones HH, Krams I, MartĂ­nez AE, Montaño-Centellas F, Muñoz J, Srinavasan U, Theo A, Shanker K (2020) Mixed company: a framework for understanding the composition and organization of mixed-species animal groups. Biological Reviews 95:889–910

    Google Scholar 

  • Klinkhamer PGL, Jong TJd, Linnebank LA (2001) Small-scale spatial patterns determine ecological relationships: an experimental example using nectar production rates. Ecology Letters 4:559–567

    Google Scholar 

  • Ness JH, Morris WF, Bronstein JL (2006) Integrating quality and quantity of mutualistic service to contrast ant species visiting Ferocactus wislizeni, a plant with extrafloral nectaries. Ecology 87:912–921

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith L. Bronstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bronstein, J.L. (2021). The Gift That Keeps on Giving: Why Does Biological Diversity Accumulate Around Mutualisms?. In: Del-Claro, K., Torezan-Silingardi, H.M. (eds) Plant-Animal Interactions. Springer, Cham. https://doi.org/10.1007/978-3-030-66877-8_11

Download citation

Publish with us

Policies and ethics