Skip to main content

Patch-Based Brain Age Estimation from MR Images

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology (MLCN 2020, RNO-AI 2020)

Abstract

Brain age estimation from Magnetic Resonance Images (MRI) derives the difference between a subject’s biological brain age and their chronological age. This is a potential biomarker for neurodegeneration, e.g. as part of Alzheimer’s disease. Early detection of neurodegeneration manifesting as a higher brain age can potentially facilitate better medical care and planning for affected individuals. Many studies have been proposed for the prediction of chronological age from brain MRI using machine learning and specifically deep learning techniques. Contrary to most studies, which use the whole brain volume, in this study, we develop a new deep learning approach that uses 3D patches of the brain as well as convolutional neural networks (CNNs) to develop a localised brain age estimator. In this way, we can obtain a visualization of the regions that play the most important role for estimating brain age, leading to more anatomically driven and interpretable results, and thus confirming relevant literature which suggests that the ventricles and the hippocampus are the areas that are most informative. In addition, we leverage this knowledge in order to improve the overall performance on the task of age estimation by combining the results of different patches using an ensemble method, such as averaging or linear regression. The network is trained on the UK Biobank dataset and the method achieves state-of-the-art results with a Mean Absolute Error of 2.46 years for purely regional estimates, and 2.13 years for an ensemble of patches before bias correction, while 1.96 years after bias correction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alfaro-Almagro, F., et al.: Image processing and quality control for the first 10,000 brain imaging datasets from UK Biobank. Neuroimage 166, 400–424 (2018)

    Article  Google Scholar 

  2. Alzheimer’s Association: 2019 Alzheimer’s disease facts and figures includes a special report on Alzheimer’s detection in the primary care setting: connecting patients and physicians. Technical report (2019). https://www.alz.org/media/Documents/alzheimers-facts-and-figures-2019-r.pdf

  3. Becker, B.G., Klein, T., Wachinger, C., Initiative, A.D.N., et al.: Gaussian process uncertainty in age estimation as a measure of brain abnormality. Neuroimage 175, 246–258 (2018)

    Article  Google Scholar 

  4. Beheshti, I., Nugent, S., Potvin, O., Duchesne, S.: Bias-adjustment in neuroimaging-based brain age frameworks: a robust scheme. Neuroimage Clin. 24, 102063 (2019)

    Google Scholar 

  5. Cole, J.H.: Multi-modality neuroimaging brain-age in UK Biobank: relationship to biomedical, lifestyle and cognitive factors. bioRxiv, p. 812982 (2019)

    Google Scholar 

  6. Cole, J.H., Franke, K.: Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci. 40(12), 681–690 (2017)

    Article  Google Scholar 

  7. Cole, J.H., et al.: Brain age predicts mortality. Mol. Psychiatry 23(5), 1385–1392 (2018)

    Article  Google Scholar 

  8. Coupé, P., Catheline, G., Lanuza, E., Manjón, J.V., Initiative, A.D.N.: Towards a unified analysis of brain maturation and aging across the entire lifespan: a MRI analysis. Hum. Brain Map. 38(11), 5501–5518 (2017)

    Article  Google Scholar 

  9. Davatzikos, C., Bhatt, P., Shaw, L.M., Batmanghelich, K.N., Trojanowski, J.Q.: Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiol. Aging 32(12), 2322.e19–2322.e27 (2011)

    Article  Google Scholar 

  10. Franke, K., Gaser, C.: Ten years of brainage as a neuroimaging biomarker of brain aging: what insights have we gained? Front. Neurol. 10, 789 (2019)

    Article  Google Scholar 

  11. Franke, K., Ziegler, G., Kloppel, S., Gaser, C., Initiative, A.D.N., et al.: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage 50(3), 883–892 (2010)

    Article  Google Scholar 

  12. Good, C.D., Johnsrude, I.S., Ashburner, J., Henson, R.N., Friston, K.J., Frackowiak, R.S.: A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14(1), 21–36 (2001)

    Article  Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Huang, T.W., et al.: Age estimation from brain MRI images using deep learning. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 849–852. IEEE (2017)

    Google Scholar 

  15. Jonsson, B.A., Bjornsdottir, G., Thorgeirsson, T., Ellingsen, L.M., Walters, G.B., Gudbjartsson, D., Stefansson, H., Stefansson, K., Ulfarsson, M.: Brain age prediction using deep learning uncovers associated sequence variants. Nature Commun. 10(1), 1–10 (2019)

    Article  Google Scholar 

  16. Juntu, J., Sijbers, J., Van Dyck, D., Gielen, J.: Bias field correction for MRI images. In: Computer Recognition Systems, pp. 543–551. Springer. https://doi.org/10.1007/3-540-32390-2_64 (2005)

  17. Keihaninejad, S., et al.: Classification and lateralization of temporal lobe epilepsies with and without hippocampal atrophy based on whole-brain automatic MRI segmentation. PLoS ONE 7(4), e33096 (2012)

    Article  Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  19. Kolbeinsson, A., et al.: Robust deep networks with randomized tensor regression layers. arXiv preprint arXiv:1902.10758 (2019)

  20. Kondo, C., et al.: An age estimation method using brain local features for T1 weighted images. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 666–669. IEEE (2015)

    Google Scholar 

  21. de Lange, A.M.G., Cole, J.H.: Commentary: correction procedures in brain-age prediction. Neuroimage Clinical 26, 102229 (2020)

    Article  Google Scholar 

  22. de Lange, A.M.G., et al.: Population-based neuroimaging reveals traces of childbirth in the maternal brain. Proc. Natl. Acad. Sci. 116(44), 22341–22346 (2019)

    Article  Google Scholar 

  23. Le, T.T., et al.: A nonlinear simulation framework supports adjusting for age when analyzing brainage. Front. Aging Neurosci. 10, 317 (2018)

    Article  Google Scholar 

  24. Lian, C., Liu, M., Zhang, J., Shen, D.: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 880–893 (2018)

    Article  Google Scholar 

  25. Liem, F., et al.: Predicting brain-age from multimodal imaging data captures cognitive impairment. Neuroimage 148, 179–188 (2017)

    Google Scholar 

  26. Liu, M., Zhang, J., Adeli, E., Shen, D.: Landmark-based deep multi-instance learning for brain disease diagnosis. Med. Image Anal. 43, 157–168 (2018)

    Article  Google Scholar 

  27. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8024–8035 (2019)

    Google Scholar 

  28. Pawlowski, N., Glocker, B.: Is texture predictive for age and sex in brain MRI? arXiv preprint arXiv:1907.10961 (2019)

  29. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. Technical report California University San Diego La Jolla Inst for Cognitive Science (1985)

    Google Scholar 

  30. Savva, G.M., Wharton, S.B., Ince, P.G., Forster, G., Matthews, F.E., Brayne, C.: Age, neuropathology, and dementia. N. Engl. J. Med. 360(22), 2302–2309 (2009)

    Article  Google Scholar 

  31. Smith, S.M., Vidaurre, D., Alfaro-Almagro, F., Nichols, T.E., Miller, K.L.: Estimation of brain age delta from brain imaging. Neuroimage 200, 528–539 (2019)

    Article  Google Scholar 

  32. Tohka, J., Moradi, E., Huttunen, H., Initiative, A.D.N., et al.: Comparison of feature selection techniques in machine learning for anatomical brain MRI in dementia. Neuroinformatics 14(3), 279–296 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

KMB would like to acknowledge funding from the EPSRC Centre for Doctoral Training in Medical Imaging (EP/L015226/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyriaki-Margarita Bintsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bintsi, KM., Baltatzis, V., Kolbeinsson, A., Hammers, A., Rueckert, D. (2020). Patch-Based Brain Age Estimation from MR Images. In: Kia, S.M., et al. Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology. MLCN RNO-AI 2020 2020. Lecture Notes in Computer Science(), vol 12449. Springer, Cham. https://doi.org/10.1007/978-3-030-66843-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66843-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66842-6

  • Online ISBN: 978-3-030-66843-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics