Skip to main content

The Roles of MADS-Box Genes During Orchid Floral Development

  • Chapter
  • First Online:
The Orchid Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 540 Accesses

Abstract

Orchids have flowers of unique beauty that are remarkable for their zygomorphic syndrome, which can be summarized as a floral architecture based on three categories of organs at the perianth: external tepals, internal lateral tepals, and a labellum or lip, a prominent central inner petal believed to be a specialized adaptation that attracts pollinators. These mesmerizing floral traits have enthralled researchers into the study of the orchid homologs of the MADS-box family of genes, which are transcriptional factors believed to be spatiotemporal determinants of organ identity during floral development. The identification of several putative members of the MADS-box family may clarify their potential role in orchid flower development, especially during the transition to flowering and during the patterning of orchid flower organs. Furthermore, we look into new technologies of genome analysis and gene editing in order to appraise potential applications for basic research purposes and for the breeding of new orchid varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aceto S, Gaudio L (2011) The MADS and the beauty: genes involved in the development of orchid flowers. Curr Genom 12:342–356

    Article  CAS  Google Scholar 

  • Acri-Nunes-Miranda R, Mondragón-Palomino M (2014) Expression of paralogous SEP-, FUL-, AG- and STK-like MADS-box genes in wild-type and peloric Phalaenopsis flowers. Front Plant Sci 5:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold S, Burgeff C, Ditta GS, Ribas de Pouplana L, Martinez-Castilla L, Yanofsky MF (2000) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci USA 10:5328–5333

    Google Scholar 

  • Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RJ (2000) Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell 5:569–579

    Article  CAS  PubMed  Google Scholar 

  • Angenent GC, Colombo L (1996) Molecular control of ovule development. Trends Plant Sci 1:228–232

    Article  Google Scholar 

  • Angenent GC, Franken J, Busscher M, van Dijken A, van Went JL, Dons HJ, van Tunen AJ (1995) A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell 7:1569–1582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Becker A, Theißen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogen Evol 29:464–489

    Article  CAS  Google Scholar 

  • Bowman JL, Drews GN, Meyerowitz EM (1991) Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. Plant Cell 3:749–758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai J, Liu X, Vanneste K, Proost S, Tsai WC, Liu KW, Chen LJ, He Y, Xu Q, Bian C, Zheng Z, Sun F, Liu W, Hsiao YY, Pan ZJ, Hsu CC, Yang YP, Hsu YC, Chuang YC, Dievart A, Dufayard JF, Xu X, Wang JY, Wang J, Xiao XJ, Zhao XM, Du R, Zhang GQ, Wang M, Su YY, Xie GC, Liu GH, Li LQ, Huang LQ, Luo YB, Chen HH, Van de Peer Y, Liu ZJ (2015) The genome sequence of the orchid Phalaenopsis equestris. Nat Genet 47:65–72

    Article  CAS  PubMed  Google Scholar 

  • Chang YY, Chiu YF, Wu JW, Yang CH (2009) Four Orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana. Plant Cell Physiol 50:1425–1438

    Article  CAS  PubMed  Google Scholar 

  • Chang YY, Chu YW, Chen CW, Leu WM, Hsu HF, Yang CH (2011) Characterization of Oncidium Gower Ramsey transcriptomes using 454 GS-FLX pyrosequencing and their application to the identification of genes associated with flowering time. Plant Cell Physiol 52:1532–1545

    Article  CAS  PubMed  Google Scholar 

  • Chang YY, Kao NH, Li JY, Hsu WH, Liang YL, Wu JW, Yang CH (2010) Characterization of the possible roles for B class MADS box genes in regulation of perianth formation in orchid. Plant Physiol 152:837–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao YT, Yen SH, Yeh JH, Chen WC, Shih MC (2017) Orchidstra 2.0- A transcriptomics resource for the orchid family. Plant Cell Physiol 58:e9–e9

    PubMed  Google Scholar 

  • Chen D, Guo B, Hexige S, Zhang T, Shen D, Ming F (2007) SQUA-like genes in the orchid Phalaenopsis are expressed in both vegetative and reproductive tissues. Planta 226:369–380

    Article  CAS  PubMed  Google Scholar 

  • Chen YY, Lee PF, Hsiao YY, Wu WL, Pan ZJ, Lee YI, Liu KW, Chen LJ, Liu ZJ, Tsai WC (2012) C-and D-class MADS-box genes from Phalaenopsis equestris (Orchidaceae) display functions in gynostemium and ovule development. Plant Cell Physiol 53:1053–1067

    Article  CAS  PubMed  Google Scholar 

  • Christenson EA (2001) Phalaenopsis-a Monograph. Timber Press, Portland Oregon

    Google Scholar 

  • Colombo L, Franken J, Koetje E, van Went J, Dons HJ, Angenent GC, van Tunen AJ (1995) The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7:1859–1868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colombo L, Franken J, Van der Krol AR, Wittich PE, Dons HJ, Angenent GC (1997) Downregulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development. Plant Cell 9:703–715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui R, Han J, Zhao S, Su K, Wu F, Du X, Xu Q, Chong K, Theißen G, Meng Z (2010) Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant J 61:767–781

    Article  CAS  PubMed  Google Scholar 

  • Davies B, Motte P, Keck E, Saedler H, Sommer H, Schwarz-Sommer Z (1999) PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. EMBO J 18:4023–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dirks-Mulder A, Butôt R, van Schaik P, Wijnands JWPM, van den Berg R, Krol L, Doebar S, van Kooperen K, de Boer H, Kramer EM, Smets EF, Vos RA, Vrijdaghs A, Gravendeel B (2017) Exploring the evolutionary origin of floral organs of Erycina pusilla, an emerging orchid model system. BMC Evol Biol 17:89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14:1935–1940

    Article  CAS  PubMed  Google Scholar 

  • Dornelas MC, Patreze CM, Angenent GC, Immink RGH (2011) MADS: the missing link between identity and growth? Trends Plant Sci 16:89–97

    Article  CAS  PubMed  Google Scholar 

  • Fornara F, Marziani G, Mizzi L, Kater M, Colombo L (2003) MADS-box genes controlling flower development in rice. Plant Biol 5:16–22

    Google Scholar 

  • Fornara F, Pařenicová L, Falasca G, Pelucchi N, Masiero S, Ciannamea S, Lopez-Dee Z, Altamura MM, Colombo L, Kater MM (2004) Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiol 135:2207–2219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu CH, Chen YW, Hsiao YY, Pan ZJ, Liu ZJ, Huang YM, Tsai WC, Chen HH (2011) OrchidBase: a collection of sequences of the transcriptome derived from orchids. Plant Cell Physiol 52:238–243

    Google Scholar 

  • Gao X, Liang W, Yin C, Ji S, Wang H, Su X, Guo C, Kong H, Xue H, Zhang D (2010) The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiol 153:728–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geuten K, Becker A, Kaufmann K, Caris P, Janssens S, Viaene T, Theißen G, Smets E (2006) Petaloidy and petal identity MADS-box genes in the balsaminoid genera Impatiens and Marcgravia. Plant J 47:501–518

    Article  CAS  PubMed  Google Scholar 

  • Goto K, Meyerowitz EM (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev 8:1548–1560

    Article  CAS  PubMed  Google Scholar 

  • Gramzow L, Theißen G (2010) A hitchhiker’s guide to the MADS world of plants. Genome Biol 11:214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Griesbach RJ (2002) Development of Phalaenopsis orchids for the mass-market. In: Janick J W (ed) Trends in New Crops and New Uses. ASHS Press, Alexandria, VA, pp 458–465

    Google Scholar 

  • Hayes TE, Sengupta P, Cochran BH (1988) The human c-fos serum response factor and the yeast factors GRM/PRTF have related DNA-binding specificities. Genes Dev 2:1713–1722

    Article  CAS  PubMed  Google Scholar 

  • Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525–529

    Article  CAS  PubMed  Google Scholar 

  • Hsieh MH, Pan ZJ, Lai PH, Lu HC, Yeh HH, Hsu -C, Wu -L, Chung MC, Wang SS, Chen WH, Chen HH (2013) Virus-induced gene silencing unravels multiple transcription factors involved in floral growth and development in Phalaenopsis orchids. J Exp Bot 64:3869–3884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu CC, Wu PS, Chen TC, Yu CW, Tsai WC, Wu K, Wu WL, Chen WH, Chen HH (2014) Histone acetylation accompanied with promoter sequences displaying differential expression profiles of B-class MADS-box genes for Phalaenopsis floral morphogenesis. PLoS ONE 9:e106033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hsu HF, Hsieh WP, Chen MK, Chang YY, Yang CH (2010) C/D class MADS box genes from two monocots, orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum), exhibit different effects on floral transition and formation in Arabidopsis thaliana. Plant Cell Physiol 51:1029–1045

    Article  CAS  PubMed  Google Scholar 

  • Hsu HF, Hsu WH, Lee YI, Mao WT, Yang JY, Li JY, Yang CH (2015) Model for perianth formation in orchids. Nature Plants 1:15046

    Article  CAS  Google Scholar 

  • Hsu HF, Huang CH, Chou LT, Yang CH (2003) Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol 44:783–794

    Article  CAS  PubMed  Google Scholar 

  • Hsu HF, Yang CH (2002) An orchid (Oncidium Gower Ramsey) AP3-like MADS gene regulates floral formation and initiation. Plant Cell Physiol 43:1198–1209

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Resende MFR, Bombarely A, Brym M, Bassil E, Chambers AH (2019) Genomics-based diversity analysis of Vanilla species using a Vanilla planifolia draft genome and Genotyping-By-Sequencing. Sci Rep 9:3416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang JZ, Lin CP, Cheng TC, Chang BCH, Cheng SY, Chen YW, Lee CY, Chin SW, Chen FC (2015) A de novo floral transcriptome reveals clues into Phalaenopsis orchid flower development. PLoS ONE 10:e0123474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang JZ, Lin CP, Cheng TC, Huang YW, Tsai YJ, Cheng SY, Chen YW, Lee CP, Chung WC, Chang BCH, Chin SW, Lee CY, Chen FC (2016) The genome and transcriptome of Phalaenopsis yield insights into floral organ development and flowering regulation. PeerJ 4:e2017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jack T, Brockman LL, Meyerowitz EM (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68:683–697

    Article  CAS  PubMed  Google Scholar 

  • Jofuku KD, den Boer BG, Van Montagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann K, Melzer R, Theißen G (2005) MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347:183–198

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Yun PY, Fukuda T, Ochiai T, Yokoyama J, Kameya T, Kanno A (2007) Expression of a DEFICIENS-like gene correlates with the differentiation between sepal and petal in the orchid, Habenaria radiata (Orchidaceae). Plant Sci 172:319–326

    Article  CAS  Google Scholar 

  • Koo SC, Bracko O, Park MS, Schwab R, Chun HJ, Park KM, Seo JS, Grbic V, Balasubramanian S, Schmid M, Godard F, Yun DJ, Lee SY, Cho MJ, Weigel D, Kim MC (2010) Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box Gene AGAMOUS-LIKE6. Plant J 62:807–816

    Article  CAS  PubMed  Google Scholar 

  • Kramer EM, Jaramillo MA, Di Stilio VS (2004) Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics 166:1011–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6:688–698

    Article  CAS  PubMed  Google Scholar 

  • Lee CY, Viswanath KK, Huang JZ, Lee CP, Lin CP, Cheng TC, Chang BC, Chung WC, Chen FC (2018) PhalDB:A comprehensive database for molecular mining of the Phalaenopsis genome, transcriptome and miRNome. Genet Mol Res 17: GMR18051

    Google Scholar 

  • Lee S, Jeon JS, An K, Moon YH, Lee S, Chung YY, An G (2003) Alteration of floral organ identity in rice through ectopic expression of OsMADS16. Planta 217:904–911

    Article  CAS  PubMed  Google Scholar 

  • Leitch IJ, Kahandawala I, Suda J, Hanson L, Ingrouille MJ, Chase MW, Fay MF (2009) Genome size diversity in orchids: consequences and evolution. Ann Bot 104:469–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Liang W, Jia R, Yin C, Zong J, Kong H, Zhang D (2010) The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice. Cell Res 20:299–313

    Article  CAS  PubMed  Google Scholar 

  • Lin CS, Hsu CT, Liao DC, Chang WJ, Chou ML, Huang YT, Chen JJW, Ko SS, Chan MT, Shih MC (2016) Transcriptome-wide analysis of the MADS-box gene family in the orchid Erycina pusilla. Plant Biotechnol J 14:284–298

    Article  CAS  PubMed  Google Scholar 

  • Litt A, Irish VF (2003) Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165:821–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu ZX, Wu M, Loh CS, Yeong CY, Goh CJ (1993) Nucleotide sequence of a flower‐specific MADS box cDNA clone from orchid. Plant Mol Biol 23:901–904

    Google Scholar 

  • Münster T, Pahnke J, Di Rosa A, Kim JT, Martin W, Saedler H, Theißen G (1997) Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc Natl Acad Sci USA 94:2415–2420

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma H, Yanofsky MF, Meyerowitz EM (1991) AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev 5:484–495

    Article  CAS  PubMed  Google Scholar 

  • Mandel MA, Yanofsky MF (1995) A gene triggering flower formation in Arabidopsis. Nature 377:522–524

    Article  CAS  PubMed  Google Scholar 

  • Mao WT, Hsu HF, Hsu WH, Li JY, Lee YI, Yang CH (2015) The C-terminal sequence and PI motif of the orchid (Oncidium Gower Ramsey) PISTILLATA (PI) ortholog determine its ability to bind AP3 orthologs and enter the nucleus to regulate downstream genes controlling petal and stamen formation. Plant Cell Physiol 56:2079–2099

    CAS  PubMed  Google Scholar 

  • Masiero S, Colombo L, Grini PE, Schnittger A, Kater MM (2011) The emerging importance of type I MADS box transcription factors for plant reproduction. Plant Cell 23:865–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messenguy F, Dubois E (2003) Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene 316:1–21

    Article  CAS  PubMed  Google Scholar 

  • Mitoma M, Kanno A (2018) The greenish flower phenotype of Habenaria radiata (Orchidaceae) is caused by a mutation in the SEPALLATA-like MADS-Box gene HrSEP-1. Front Plant Sci 9:831

    Article  PubMed  PubMed Central  Google Scholar 

  • Mondragón-Palomino M, Theißen G (2009) Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes. Ann Bot 13:51–59

    Google Scholar 

  • Mondragón-Palomino M, Theißen G (2008) MADS about the evolution of orchid flowers. Trends Plant Sci 13:51–59

    Article  PubMed  CAS  Google Scholar 

  • Mondragón-Palomino M, Theißen G (2011) Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: refining the ‘orchid code’. Plant J 66:1008–1019

    Article  PubMed  CAS  Google Scholar 

  • Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y (2003) SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development 130:705–718

    Article  CAS  PubMed  Google Scholar 

  • Norman C, Runswick M, Pollock R, Treisman R (1988) Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 55:989–1003

    Article  CAS  PubMed  Google Scholar 

  • O’Neill SD (1997) Pollination regulation of flower development. Annu Rev Plant Physiol Plant Mol Biol 48:547–574

    Article  PubMed  Google Scholar 

  • Ohmori S, Kimizu M, Sugita M, Miyao A, Hirochika H, Uchida E, Nagato Y, Yoshida H (2009) MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice. Plant Cell 21:3008–3025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan ZJ, Chen YY, Du JS, Chen YY, Chung MC, Tsai WC, Wang CN, Chen HH (2014) Flower development of Phalaenopsis orchid involves functionally divergent SEPALLATA-like genes. New Phytol 202:1024–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Par̆enicová L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15:1538–1551

    Google Scholar 

  • Passmore S, Maine GT, Elble R, Christ C, Tye BK (1988) Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MATα cells. J Mol Biol 204:593–606

    Article  CAS  PubMed  Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203

    Article  CAS  PubMed  Google Scholar 

  • Petruzzello M (2018) List of plants in the family Orchidaceae. https://www.britannica.com/topic/list-of-plants-in-the-family-Orchidaceae-2075389

  • Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85–88

    Article  CAS  PubMed  Google Scholar 

  • Puranik S, Acajjaoui S, Conn S, Costa L, Conn V, Vial A, Marcellin R, Melzer R, Brown E, Hart D, Theißen G, Silva CS, Parcy F, Dumas R, Nanao M, Zubieta C (2014) Structural basis for the oligomerization of the MADS domain transcription factor SEPALLATA3 in Arabidopsis. Plant Cell 26:3603–3615

    Google Scholar 

  • Purugganan MD, Rounsley SD, Schmidt RJ, Yanofsky MF (1995) Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140:345–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajkumari JD, Longjam RS (2005) Orchid flower evolution. J Genet 84:81–84

    Article  CAS  PubMed  Google Scholar 

  • Reinheimer R, Kellogg EA (2009) Evolution of AGL6-like MADS box genes in grasses (Poaceae): ovule expression is ancient and palea expression is new. Plant Cell 21:2591–2605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riechmann JL, Wang M, Meyerowitz EM (1996) DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Res 24:3134–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rounsley SD, Ditta GS, Yanofsky MF (1995) Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7:1259–1269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rudall PJ, Bateman RM (2002) Roles of synorganisation, zygomorphy and heterotopy in floral evolution: the gynostemium and labellum of orchids and other lilioid monocots. Biol Rev Camb Philos Soc 77:403–441

    Article  PubMed  Google Scholar 

  • Salemme M, Sica M, Gaudio L, Aceto S (2013) The OitaAG and OitaSTK genes of the orchid Orchis italica: a comparative analysis with other C- and D-class MADS-box genes. Mol Biol Rep 40:3523–3535

    Article  CAS  PubMed  Google Scholar 

  • Sawettalake N, Bunnag S, Wang Y, Shen L, Yu H (2017) DOAP1 promotes flowering in the orchid Dendrobium Chao Praya Smile. Front Plant Sci 8:400

    Google Scholar 

  • Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250:931–936

    Article  CAS  PubMed  Google Scholar 

  • Skipper M, Johansen LB, Pedersen KB, Frederiksen S, Johansen BB (2006) Cloning and transcription analysis of an AGAMOUS- and SEEDSTICK ortholog in the orchid Dendrobium thyrsiflorum (Reichb. f.). Gene 366:266–274

    Article  CAS  PubMed  Google Scholar 

  • Song IJ, Nakamura T, Fukuda T, Yokoyama J, Ito T, Ichikawa H, Horikawa Y, Kameya T, Kanno A (2006) Spatiotemporal expression of duplicate AGAMOUS orthologues during floral development in Phalaenopsis. Dev Genes Evol 216:301–313

    Google Scholar 

  • Su CL, Chao YT, Yen SH, Chen CY, Chen WC, Chang YCA, Shih MC (2013a) Orchidstra: An integrated orchid functional genomics database. Plant Cell Physiol 54:e11–e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su CL, Chen WC, Lee AY, Chen CY, Chang YCA, Chao YT, Shih MC (2013b) A modified ABCDE model of flowering in orchids based on gene expression profiling studies of the moth orchid Phalaenopsis aphrodite. PLoS ONE 8:e80462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swamy BGL (1943) Embryology of Orchidaceae. Curr Sci 12:13–17

    Google Scholar 

  • Teo ZWN, Zhou W, Shen L (2019) Dissecting the function of MADS-box transcription factors in orchid reproductive development. Front Plant Sci 10:1474

    Article  PubMed  PubMed Central  Google Scholar 

  • Theißen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85

    Article  PubMed  Google Scholar 

  • Theißen G, Becker A, Di Rosa A, Kanno A, Kim JT, Munster T, Winter KU, Saedler H (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42:115–149

    Google Scholar 

  • Theißen G, Melzer R (2007) Molecular mechanisms underlying origin and diversification of the angiosperm flower. Ann Bot 100:603–619

    Article  PubMed  PubMed Central  Google Scholar 

  • Theißen G, Melzer R, Rümpler F (2016) MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 143:3259–3327

    Article  PubMed  CAS  Google Scholar 

  • Tian Y, Yuan X, Jiang S, Cui B, Su J (2013) Molecular cloning and spatiotemporal expression of an APETALA1/FRUITFULL-like MADS-box gene from the orchid (Cymbidium faberi). Sheng Wu Gong Cheng Xue Bao 29:203–213

    Google Scholar 

  • Tong CG, Wu FH, Yuan YH, Chen YR, Lin CS (2020) High-efficiency CRISPR/Cas-based editing of Phalaenopsis orchid MADS genes. Plant Biotechnol J 18:889–891

    Article  PubMed  Google Scholar 

  • Tsai WC, Dievart A, Hsu CC, Hsiao YY, Chiou SY, Huang H, Chen HH (2017) Post genomics era for orchid research. Bot Stud 58:61

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsai WC, Fu CH, Hsiao YY, Huang YM, Chen LJ, Wang M, Liu ZJ, Chen H-H (2013) OrchidBase 2.0: comprehensive collection of Orchidaceae floral transcriptomes. Plant Cell Physiol 54:e7

    Google Scholar 

  • Tsai WC, Lee PF, Chen HI, Hsiao YY, Wei WJ, Pan ZJ, Chuang MH, Kuoh CS, Chen WH, Chen HH (2005) PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol 46:1125–1139

    Article  CAS  PubMed  Google Scholar 

  • Tsai WC, Pac ZJ, Hsiao YY, Chen LJ, Liu ZJ (2014) Evolution and function of MADS-box genes involved in orchid floral development. J Syst Evol 52:397–410

    Article  Google Scholar 

  • Tsai WC, Kuoh CS, Chuang MH, Chen WH, Chen HH (2004) Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol 45:831–844

    Article  CAS  PubMed  Google Scholar 

  • Tsuchimoto S, Mayama T, Van Der Krol A, Ohtsubo E (2000) The whorl-specific action of a petunia class B floral homeotic gene. Genes Cells 5:89–99

    Article  CAS  PubMed  Google Scholar 

  • Tzeng TY, Yang CH (2001) A MADS box gene from lily (Lilium longiflorum) is sufficient to generate dominant negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana. Plant Cell Physiol 42:1156–1168

    Google Scholar 

  • Valoroso MC, Censullo MC, Aceto S (2019) The MADS-box genes expressed in the inflorescence of Orchis italica (Orchidaceae). PLoS ONE 14:e0213185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandenbussche M, Theißen G, Van de Peer Y, Gerats T (2003a) Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations. Nucleic Acids Res 31:4401–4409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandenbussche M, Zethof J, Souer E, Koes R, Tornielli GB, Pezzotti M, Ferrario S, Angenent GC, Gerats T (2003b) Toward the analysis of the Petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in Petunia. Plant Cell 15:2680–2693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SY, Lee PF, Lee YI, Hsiao YY, Chen YY, Pan ZJ, Liu ZJ, Tsai WC (2011) Duplicated C-class MADS-box genes reveal distinct roles in gynostemium development in Cymbidium ensifolium (Orchidaceae). Plant Cell Physiol 52:563–577

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78:203–209

    Article  CAS  PubMed  Google Scholar 

  • Whipple CJ, Ciceri P, Padilla CM, Ambrose BA, Bandong SL, Schmidt RJ (2004) Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development 131:6083–6091

    Article  CAS  PubMed  Google Scholar 

  • Winter KU, Weiser C, Kaufmann K, Bohne A, Kirchner C, Kanno A, Saedler H, Theißen G (2002) Evolution of class B floral homeotic proteins: obligate heterodimerization originated from homodimerization. Mol Biol Evol 19:587–596

    CAS  Google Scholar 

  • Wittich PF, de Heer RF, Cheng XF, Kieft H, Colombo L, Angenent GCand A. A. M. van Lammeren (1999) Immunolocalization of the petunia floral binding proteins 7 and 11 duringseed development in wild-type and expression mutants of Petunia hybrida. Protoplasma 208:224–229

    Google Scholar 

  • Xiang L, Chen Y, Chen L, Fu X, Zhao K, Zhang J, Sun C (2018) B and E MADS-box genes determine the perianth formation in Cymbidium goeringii Rchb.f. Physiol Plant 162:353–369

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Teo LL, Zhou J, Kumar PP, Yu H (2006) Floral organ identity genes in the orchid Dendrobium crumenatum. Plant J 46:54–68

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Wang X, Liu H, Tian Y, Lian J, Yang R, Hao S, Wang X, Yang S, Li Q, Qi S, Kui L, Okpekum M, Ma X, Zhang J, Ding Z, Zhang G, Wang W, Dong Y, Sheng J (2015) The genome of Dendrobium officinale illuminates the biology of the important traditional Chinese orchid herb. Mol Plant 8:922–934

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Zhu G (2015) Digital gene expression analysis based on de novo transcriptome assembly reveals new genes associated with floral organ differentiation of the orchid plant Cymbidium ensifolium. PLoS ONE 10:e0142434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang F, Zhu G, Wei Y, Gao J, Liang G, Peng L, Lu C, Jin J (2019) Low-temperature-induced changes in the transcriptome reveal a major role of CgSVP genes in regulating flowering of Cymbidium goeringii. BMC Genom 20:53

    Article  Google Scholar 

  • Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35–39

    Article  CAS  PubMed  Google Scholar 

  • Yoo SK, Hong SM, Lee JS, Ahn JH (2011a) A genetic screen for leaf movement mutants identifies a potential role for AGAMOUS-LIKE 6 (AGL6) in circadian-clock control. Mol Cells 31:281–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo SK, Wu X, Lee JS, Ahn JH (2011b) AGAMOUS-LIKE 6 is a floral promoter that negatively regulates the FLC/MAF clade genes and positively regulates FT in Arabidopsis. Plant J 65:62–76

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Goh CJ (2000) Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant Physiol 123:1325–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahn LM, Leebens-Mack JH, Arrington JM, Hu Y, Landherr LL, DePamphilis CW, Becker A, Theißen G, Ma H (2006) Conservation and divergence in the AGAMOUS subfamily of MADS-box genes: evidence of independent sub- and neofunctionalization events. Evol Dev 8:30–45

    Article  CAS  PubMed  Google Scholar 

  • Zhang GQ, Liu KW, Li Z, Lohaus R, Hsiao Y-Y, Niu SC, Wang JY, Lin YC, Xu Q, Chen LJ, Yoshida K, Fujiwara S, Wang ZW, Zhang YQ, Mitsuda N, Wang M, Liu GH, Pecoraro L, Huang HX, Xiao XJ, Lin M, Wu XY, Wu WL, Chen YY, Chang SB, Sakamoto S, Ohme-Takagi M, Yagi M, Zeng SJ, Shen CY, Yeh CM, Luo YB, Tsai WC, Van de Peer Y, Liu ZJ (2017) The Apostasia genome and the evolution of orchids. Nature 549:379–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang GQ, Xu Q, Bian C, Tsai WC, Yeh CM, Liu KW, Yoshida K, Zhang LS, Chang SB, Chen F, Shi Y, Su YY, Zhang YQ, Chen LJ, Yin Y, Lin M, Huang H, Deng H, Wang Z-W, Zhu SL, Zhao X, Deng C, Niu SC, Huang J, Wang M, Liu G-H, Yang HJ, Xiao XJ, Hsiao YY, Wu WL, Chen YY, Mitsuda N, Ohme-Takagi M, Luo YB, Van de Peer Y, Liu ZJ (2016) The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development, and adaptive evolution. Sci Rep 6:19029

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fure-Chyi Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, JZ., Bolaños-Villegas, P., Pan, IC., Chen, FC. (2021). The Roles of MADS-Box Genes During Orchid Floral Development. In: Chen, FC., Chin, SW. (eds) The Orchid Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-66826-6_7

Download citation

Publish with us

Policies and ethics