Skip to main content

Phalaenopsis Genome and Transcriptome Exploitation and Its Application for Breeding

  • Chapter
  • First Online:
The Orchid Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 538 Accesses

Abstract

Orchidaceae is one of the largest families of flowering plants with about 30,000 species. Orchid flowers are highly valued because of their quite distinct and pretty features like spectacular floral shape, color, and elaborate adaptations to pollinators. Among the numerous species, the Phalaenopsis genus of about 66 species derived hybrids is the popular potted ornamental plant. Nowadays, there are more commercial demands for the various Phalaenopsis hybrids with diverse flower colors, fragrance, disease-free, environmentally protected with long-lasting blooming. To produce Phalaenopsis hybrids with diverse features, the whole-genome organization analysis plays a key role to deploy suitable strategies. Genome sequencing has been developed as an important discipline in the plant sciences. During the past decade, remarkable advancement has been made in next-generation sequencing technologies, including 454 pyrosequencing, Illumina/Solexa technology, and sequencing by oligo ligation detection. To accelerate genetic improvement through molecular breeding, wide-ranging analyses of genes and the genome of Phalaenopsis have been conducted using advanced technologies. Whole-genome and transcriptomes were sequenced, assembled, and annotated in (wild-type and peloric mutant plants) P. equestris, P. aphrodite and hybrids. The chloroplast DNA sequence information of P. equestris and P. aphrodite were  obtained. Various RNA-Seq reads were produced from flowers and temperature treated parts of Phalaenopsis orchids (wild-type and peloric mutant plants) and P. bellina. From these produced genome sequences, various databases were constructed for the Phalaenopsis genome. We expect Phalaenopsis genome sequences, microRNAs, expressed sequence tags, simple sequence repeats, linkage maps, and constructed databases will deliver a valued source for basic and applied research, including comparative genomic analysis, developmental studies and molecular breeding on Phalaenopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Myr:

Million years

CAM:

Crassulacean acid metabolism

NGS:

Next-generation sequencing

SOLiD:

Sequencing by oligo ligation detection

PGM:

Personal genome machine

NCBI:

National Center for Biotechnology Information

TCV:

Total chromosome volume

CH:

Constitutive heterochromatin

ESTs:

Expressed sequence tags

BESs:

Bacterial artificial chromosome end sequences

TEs:

Transposable elements

LTRs:

Long terminal repeats

DEGs:

Differentially expressed genes

GO:

Gene Ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

FISH:

Fluorescent in situ hybridization

sRNA:

small RNA

References

  • An FM, Ming TC (2012) Transcriptome-wide characterization of miRNA-directed and non-miRNA-directed endonucleolytic cleavage using Degradome analysis under low ambient temperature in Phalaenopsis aphrodite subsp. formosana. Plant Cell Physiol 10:1737–1750

    Article  CAS  Google Scholar 

  • An FM, Shuan RH, Ming TC (2011) Sequencing-based approaches reveal low ambient temperature-responsive and tissue-specific microRNAs in Phalaenopsis orchid. PLoS ONE 6:e18937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Arends JC (1970) Cytological observations on genome homology in eight interspecific hybrids of Phalaenopsis. Genetica 41:88–100

    Article  Google Scholar 

  • Atwood JT (1986) The size of Orchidaceae and the systematic distribution of epiphytic orchids. Selbyana 9:171–186

    Google Scholar 

  • Cai J, Xin L, Kevin V, Sebastian P, Wen CT et al (2015) The genome sequence of the orchid Phalaenopsis equestris. Nat Genet 47:65–72

    Article  CAS  PubMed  Google Scholar 

  • Chang CC, Lin HC, Pin LI, The YC, Chen HH et al (2006) The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol Biol Evol 23:279–291

    Article  CAS  PubMed  Google Scholar 

  • Chang SB, Wen HC, Chen HH, Fu YM, Yih SL (2000) RFLP and inheritance patterns of chloroplast DNA in intergeneric hybrids of Phalaenopsis and Doritis. Bot Bull Academia Sinica 41:219–223

    CAS  Google Scholar 

  • Chao YT, Chun LS, Wen HJ, Wan CC, Yao CAC et al (2014) Identification and characterization of the microRNA transcriptome of a moth orchid Phalaenopsis aphrodite. Plant Mol Biol 84:529–548

    Article  CAS  PubMed  Google Scholar 

  • Chao YT, Shao HY, Jen HY, Wan CC, Ming CS (2017) Orchidstra 2.0 a transcriptomics resource for the orchid family. Plant Cell Physiol 58:1–13

    CAS  Google Scholar 

  • Chao YT, Wan CC, Chun YC, Hsiu YH, Chih HY et al (2018) Chromosome-level assembly, genetic and physical mapping of Phalaenopsis aphrodite genome provides new insights into species adaptation and resources for orchid breeding. Plant Biotechnol J 16:2027–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chase MW, Cameron KM, Barrett RL, Freudenstein JV (2003) DNA data and Orchidaceae systematics: a new phylogenetic classification. In: Dixon KW, Kell SP, Barrett RL, Cribb PJ (eds) Orchid conservation. Natural History Publications, Kota Kinabalu, Sabah, Malaysia, pp 69–89

    Google Scholar 

  • Chen TC, Yu CL, Xuewen W, Chi HW, Chih HH et al (2017) Whole plastid transcriptomes reveal abundant RNA editing sites and differential editing status in Phalaenopsis aphrodite subsp. formosana. Bot stud 58:38

    Google Scholar 

  • Chen WH, Kao YL, Tang CY, Tsai CC, Lin TY (2013) Estimating nuclear DNA content within 50 species of the genus Phalaenopsis Blume (Orchidaceae). Sci Hortic 161:70–75

    Article  CAS  Google Scholar 

  • Chen WH, Kao YK, Tang CY (2014) Variation of the genome size among Phalaenospsis species using DAPI. J Taiwan Soc Hortic Sci 60:115–123

    Google Scholar 

  • Chen YH, Tsai YJ, Hung JZ, Chen FC (2005) Transcription analysis of peloric mutants of Phalaenopsis orchids derived from tissue culture. Cell Res 15:639–657

    Article  CAS  PubMed  Google Scholar 

  • Cheng FJ, Tien CC, Jhong YL, Ting CC, Wen LW, Ching CC (2012) The comparative chloroplast genomic analysis of photosynthetic orchids and developing DNA markers to distinguish Phalaenopsis orchids. Plant Sci 190:62–73

    Google Scholar 

  • Chih-Chung L, Yao HC, Wen HC, Chi CC, Yen YK (2005) Genome organization and relationships of Phalaenopsis orchids inferred from genomic in situ hybridization. Bot Bull Academia Sinica 46:339–345

    Google Scholar 

  • Christenson EA (2001) Phalaenopsis—a monograph. Timber Press, Portland, Oregon, p 330p

    Google Scholar 

  • Cubas P (2004) Floral zygomorphy, the recurring evolution of a successful trait. BioEssays 26:1175–1184

    Article  CAS  PubMed  Google Scholar 

  • De LC, Pathak P, Rao AN (2014) Commercial Orchids. Walter de Gruyter, Warsaw and Berlin, p 301p

    Google Scholar 

  • Dressler RL (1993) Phylogeny and Classification of the Orchid Family. Cambridge University Press, Cambridge, p 321

    Google Scholar 

  • Fu CH, Yun WC, Yu YH, Zhao JP, Zhong JL et al (2011) OrchidBase: a collection of sequences of the transcriptome derived from orchids. Plant Cell Physiol 52:238–243

    Article  CAS  PubMed  Google Scholar 

  • Gill DE (1989) Fruiting failure, pollinator inefficiency, and speciation in orchids. In: Otte D, Ender JA (eds) Speciation and Its Consequences. Sunderland, MA, pp p458–481

    Google Scholar 

  • Givnish TJ, Daniel S, Mercedes A, Stephanie PL, Steven JH et al (2015) Orchid phylogenomics and multiple drivers of their extraordinary diversification. Proc Royal Soc B 282:20151553

    Article  Google Scholar 

  • Hinsley A, Hugo JB, Michael FF, Stephan WG, Lauren MG et al (2017) A review of the trade in orchids and its implications for conservation. Bot J Linnean Soc 186:435–455

    Article  Google Scholar 

  • Hsiao YY, Tsai WC, Chang SK, Tian HH, Hei CW et al (2006) Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway. BMC Plant Biol 6:1–14

    Article  CAS  Google Scholar 

  • Hsiao YY, Pan ZJ, Chia CH, Ya PY, Yi CH et al (2011a) Research on orchid biology and biotechnology. Plant Cell Physiol 52:1467–1486

    Article  CAS  PubMed  Google Scholar 

  • Hsiao YY, Yun WC, Shi CH, Zhao JP, Chih HF et al (2011b) Gene discovery using next-generation pyrosequencing to develop ESTs for Phalaenopsis orchids. BMC Genom 12:360

    Article  CAS  Google Scholar 

  • Hsiao YY, Tian HH, Chih HF, Shi CH, Yi JC et al (2013) Transcriptomic analysis of floral organs from Phalaenopsis orchid by using oligonucleotide microarray. Gene 518:91–100

    Article  CAS  PubMed  Google Scholar 

  • Hsu CC, Yu LC, Tien CC, Yu LL, Yi TK et al (2011) An overview of the Phalaenopsis orchid genome through BAC end sequence analysis. BMC Plant Biol 11:1–13

    Article  CAS  Google Scholar 

  • Huang JZ, Chih PL, Ting CC, Bill CHC, Shu-YC et al (2015) A de novo floral transcriptome reveals clues into Phalaenopsis orchid flower development. PloS One 10:e0123474

    Google Scholar 

  • Huang JZ, Chih PL, Ting CC, Ya WH, Yi JT et al (2016) The genome and transcriptome of Phalaenopsis yield insights into floral organ development and flowering regulation. PeerJ 4:e2017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jin J, Zhang H, Kong L, Ge G, Jingchu L et al (2014) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42:D1182–1187

    Article  CAS  PubMed  Google Scholar 

  • Kim GB, Youngeun K, Hee JY, Ki BL, Jae HS et al (2016) The complete chloroplast genome of Phalaenopsis “Tiny Star”. Mitochondrial DNA Part A 27:1300–1302

    Article  CAS  Google Scholar 

  • Kuo YT, Hui LH, Chih HY, Song BC (2016) Application of a modified drop method for high-resolution pachytene chromosome spreads in two Phalaenopsis species. Mol Cytogenet 9:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kwon YE, Hee JY, Seunghoon B, Goon BK, Ki BL et al (2017) Development of gene-based identification markers for Phalaenopsis ‘KS Little Gem’ based on comparative genome analysis. Hortic Environ Biotechnol 58:162–169

    Article  CAS  Google Scholar 

  • Kao YY, Chang SB, Tsai YL, Chang HH, Yao HC et al (2001) Differential accumulation of heterochromatin as a cause for karyotype variation in Phalaenopsis orchids. Ann Bot 87:387–395

    Article  CAS  Google Scholar 

  • Kuo HL, Ke CI, Chen YS, Chin SW, Chen FC (2005) Study on root tip squash and staining techniques of Phalaenopsis orchids. J Chin Soc Hortic Sci 51:339–345 (in Chinese)

    Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CY, Viswanath KK, Huang JZ, Lee CP, Lin CP, Cheng TC, Chang BC, Chin SW, Chen FC (2018) PhalDB:A comprehensive database for molecular mining of the Phalaenopsis genome, transcriptome and miRNome. Genet Mol Res 17(4):GMR18051

    Google Scholar 

  • Lee HC, Chiou DW, Wen HC, Albert H, Yao HC et al (2004) Dynamics of cell growth and endoreduplication during orchid flower development. Plant Sci 166:659–667

    Article  CAS  Google Scholar 

  • Lee YI, Tseng YF, Lee YC, Chung MC (2020) Chromosome constitution and nuclear DNA content of Phalaenopsis hybrids. Sci Hortic 262:109089

    Article  CAS  Google Scholar 

  • Lee YI, Mei CC, Hao CK, Chun NW, Yi CL et al (2017) The evolution of genome size and distinct distribution patterns of rDNA in Phalaenopsis (Orchidaceae). Bot J Linnean Soc 185:65–80

    Article  Google Scholar 

  • Leitch JI, Kahandawala I, Suda J, Hanson L, Ingrouille MJ et al (2009) Genome size diversity in orchids: consequences and evolution. Ann Bot 104:469–481

    Google Scholar 

  • Lin CS, Jeremy JWC, Chi CC, Hsiao CW, Chen JY et al (2017) Concomitant loss of NDH complex-related genes within chloroplast and nuclear genomes in some orchids. Plant J 90(5):994–1006

    Article  CAS  PubMed  Google Scholar 

  • Lin HY, Jhun CC, Miao JW, Yi CL, Huang HL et al (2014) Genome-wide annotation, expression profiling, and protein interaction studies of the core cell-cycle genes in Phalaenopsis aphrodite. Plant Mol Biol 84:203–226

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Lee HC, Wen HC, Chi CC, Yen YK et al (2001) Nuclear DNA contents of Phalaenopsis species and Doritis pulcherrima. J Amer Soc Hortic Sci 126:195–199

    Article  CAS  Google Scholar 

  • Lin YF, You YC, Yu YH, Ching YS, Jui LH et al (2016) Genome-wide identification and characterization of TCP genes involved in ovule development of Phalaenopsis equestris. J Exp Bot 67:5051–5066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YC, Bo YL, Jhong YL, Wen LW, Ching CC et al (2016) Evaluation of chloroplast DNA markers for intraspecific identification of Phalaenopsis equestris cultivars. Sci Hortic 203:86–94

    Article  CAS  Google Scholar 

  • Nawrocki EP, Eddy SR (2013) Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29:2933–2935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu SC, Qing X, Guo QZ, Yong QZ, Wen CT et al (2016) De novo transcriptome assembly databases for the butterfly orchid Phalaenopsis equestris. Sci Data 3:160083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peakall R (2007) Speciation in the Orchidaceae: confronting the challenges. Mol Ecol 16:2834–2837

    Article  PubMed  Google Scholar 

  • Ramirez SR, Gravendeel B, Rodrigo BS, Charles RM, Naomi EP et al (2007) Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature 448:1042–1045

    Article  CAS  PubMed  Google Scholar 

  • Shalek AK, Rahul S, Joe S, John JT, Dave G et al (2014) Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 509:363–369

    Article  CAS  Google Scholar 

  • Silvera K, Santiago LS, John CC, Klaus W (2009) Crassulacean acid metabolism and epiphytism linked to adaptive radiations in the Orchidaceae. Plant Physiol 149:1838–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su CL, Ya TC, Yao CAC, Wan CC, Chun YC et al (2011) De novo assembly of expressed transcripts and global analysis of the Phalaenopsis aphrodite transcriptome. Plant Cell Physiol 52:1501–1514

    Article  CAS  PubMed  Google Scholar 

  • Su CL, Ya TC, Shao HY, Chun YC, Wan CC et al (2013) Orchidstra: an integrated orchid functional genomics database. Plant Cell Physiol 54:1–11

    Article  CAS  Google Scholar 

  • Tsai CC, Huei CS, Hao VW, Yu SL, Chia HC et al (2015) RNA-seq SSRs of moth orchid and screening for molecular markers across genus Phalaenopsis (Orchidaceae). PLoS One 10(11):e0141761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsai WC, Hsiao YY, Lee SH, Tung CW, Wang DP et al (2006) Expression analysis of the ESTs derived from the flower buds of Phalaenopsis equestris. Plant Sci 170:426–432

    Article  CAS  Google Scholar 

  • Tsai WC, Hsiao YY, Pan ZJ, Chen HH (2007) Analysis of expression of Phalaenopsis floral ESTs. In: Chen HH, Chen WH (eds) Orchid Biotechnology. World Sci Publishing, Singapore, pp 145–161

    Google Scholar 

  • Tsai WC, Chih HF, Yu YH, Yueh MH, Li JC et al (2013) OrchidBase 2.0: comprehensive collection of Orchidaceae floral transcriptomes. Plant Cell Physiol 54:1–7

    Article  CAS  Google Scholar 

  • UNEP-WCMC (2017) CITES trade statistics derived from the CITES Trade Database. UNEP World Conservation Monitoring Centre, Cambridge. https://trade.cites.org

  • Varshney RK, Nayak SN, Gregory DM, Scott AJ (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    Article  CAS  PubMed  Google Scholar 

  • Valliyodan B, Suk HL, Henry TN (2017) Sequencing, assembly, and annotation of the soybean genome. In: Nguyen H, Bhattacharyya M (eds) The Soybean Genome. Compendium of Plant Genomes. Springer, Cham, pp 73–82

    Google Scholar 

  • Van Dijk EL, Hélène A, Yan J, Claude T (2014) Ten years of next-generation sequencing technology. Trends Genet 30:418–426

    Google Scholar 

  • Wang L, Feng Z, Wang X, Xiaowo W, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Biyu Z, Junmei H, Wen H, Yumei L et al (2015) Genome-wide transcriptome and expression profile analysis of Phalaenopsis during explant browning. PLoS One 10:e0123356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu L, Wang XJ, Wang T, Li LB (2017) Genome-wide identification, classification, and expression analysis of the phytocyanin gene family in Phalaenopsis equestris. Biol Plant 61:445–452

    Google Scholar 

  • Zhang J, Liu J, Ming R (2014) Genomic analyses of the CAM plant pineapple. J Exp Bot 65:3395–404

    Article  PubMed  Google Scholar 

  • Zhang L, Chen F, Zhang GQ, Zhang YQ, Shance N et al (2016) Origin and mechanism of crassulacean acid metabolism in orchids as implied by comparative transcriptomics and genomics of the carbon fixation pathway. Plant J 86:175–185

    Article  CAS  PubMed  Google Scholar 

  • Zeng WH, Liao SC, Chang CC (2007) Identification of RNA editing sites in chloroplast transcripts of Phalaenopsis aphrodite and comparative analysis with those of other seed plants. Plant Cell Physiol 48:362–368

    Article  CAS  PubMed  Google Scholar 

  • Ziv M, Naor V (2006) Flowering of geophytes in vitro. Propag Ornament Plants 6:3–16

    Google Scholar 

Download references

Acknowledgements

The works by authors described in this chapter were supported by grants from the Ministry of Science and Technology (MOST 106-2321-B-020-002) and Agriculture and Food Agency, Council of Agriculture, Taiwan (107AS-7.6.3-FD-Z2, 107AS-7.5.3-FD-Z1 and 108AS-7.5.2-FD-Z1) to FCC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fure-Chyi Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Viswanath, K.K., Huang, JZ., Chin, SW., Chen, FC. (2021). Phalaenopsis Genome and Transcriptome Exploitation and Its Application for Breeding. In: Chen, FC., Chin, SW. (eds) The Orchid Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-66826-6_4

Download citation

Publish with us

Policies and ethics