Skip to main content

Towards High-Fidelity Multiphase Simulations: On the Use of Modern Data Structures on High Performance Computers

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering '19

Abstract

Compressible multi-phase simulations in the homogeneous equilibrium limit are generally based on real equations of state (EOS). The direct evaluation of such EOS is typically too expensive. Look-up tables, based on modern data-structures significantly, reduce the computation time while simultaneously increasing the memory requirements during the simulation. In the context of binary mixtures and large scale simulations this trade off is even more important due to the limited memory resources available on high performance computers. Therefore, in this work we propose an extension of our tabulation approach to shared memory trees based on MPI 3.0. A detailed analysis of benefits and drawbacks concerning the shared memory and the non-shared memory data-structure is described. Another research topic investigates the diffuse interface model of the isothermal Navier–Stokes–Korteweg equations. A parabolic relaxation model is implemented in the open-source code FLEXI and 3D simulations of binary head on collisions at various model parameters are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.flexi-project.org.

References

  1. R. Akasaka, A reliable and useful method to determine the saturation state from Helmholtz energy equations of state. J. Therm. Sci. Technol. 3, 442–451 (2008)

    Article  Google Scholar 

  2. L.E. Baker, A.C. Pierce, K.D. Luks, Gibbs energy analysis of phase equilibria. SPE J. 22, 731–742 (1982)

    Google Scholar 

  3. F. Bassi, S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131(2), 267–279 (1997). https://doi.org/10.1006/jcph.1996.5572

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Bassi, S. Rebay, Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 40(1–2), 197–207 (2002). https://doi.org/10.1002/fld.338

    Article  MATH  Google Scholar 

  5. O. Botella, R. Peyret, Benchmark spectral results on the lid-driven cavity flow. Comput. Fluids 27(4), 421–433 (1998). https://doi.org/10.1016/S0045-7930(98)00002-4

  6. T. Coffee, J. Heimerl, Transport algorithms for premixed, laminar steady-state flames. Combust. Flame 43(Supplement C), 273–289 (1981). https://doi.org/10.1016/0010-2180(81)90027-4

  7. A. Corli, C. Rohde, V. Schleper, Parabolic approximations of diffusive-dispersive equations. J. Math. Anal. Appl. 414(2), 773–798 (2014). https://doi.org/10.1016/j.jmaa.2014.01.049

    Article  MathSciNet  MATH  Google Scholar 

  8. FLEXI, Description and source code (2018), https://www.flexi-project.org/. Accessed 02 Oct 2018

  9. F. Föll, T. Hitz, C. Müller, C.D. Munz, M. Dumbser, On the use of tabulated equations of state for multi-phase simulations in the homogeneous equilibrium limit. Shock. Waves 1 (2019). https://doi.org/10.1007/s00193-019-00896-1

  10. F. Föll, S. Pandey, X. Chu, C.D. Munz, E. Laurien, B. Weigand, High-fidelity direct numerical simulation of supercritical channel flow using discontinuous Galerkin spectral element method, in High Performance Computing in Science and Engineering ’ 18, ed. by W.E. Nagel, D.H. Kröner, M.M. Resch (Springer International Publishing, 2019), pp. 275–289

    Google Scholar 

  11. J. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, 1st edn. (Springer Publishing Company, Incorporated, 2008). https://doi.org/10.1007/978-0-387-72067-8

  12. F. Hindenlang, G. Gassner, C. Altmann, A. Beck, M. Staudenmaier, C. Munz, Explicit discontinuous Galerkin methods for unsteady problems. Comput. Fluids 61, 86–93 (2012). https://doi.org/10.1016/j.compfluid.2012.03.006

    Article  MathSciNet  MATH  Google Scholar 

  13. C.A. Kennedy, M.H. Carpenter, R. Lewis, Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Math. 35(3), 177–219 (2000). https://doi.org/10.1016/S0168-9274(99)00141-5

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Kopriva, Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers, 1st edn. (Springer Publishing Company, Incorporated, 2009)

    Google Scholar 

  15. M.L. Michelsen, The isothermal flash problem. Part 1. Stability. Fluid Phase Equilib. 9, 1–19 (1982a)

    Article  Google Scholar 

  16. M.L. Michelsen, The isothermal flash problem. Part 2. Phase-split calculation. Fluid Phase Equilib. 9, 21–40 (1982b)

    Article  Google Scholar 

  17. M.L. Michelsen, J.M. Mollerup, Thermodynamic Models: Fundamentals & Computational Aspects, 2nd edn. (Tie-Line Publications, Holte, 2007)

    Google Scholar 

  18. D.Y. Peng, D.B. Robinson, A new two-constant equation of state. Ind. Eng. Chem. Fundam. (1976)

    Google Scholar 

  19. P. Persson, J. Peraire, Sub-cell shock capturing for discontinuous galerkin methods, in 44th AIAA Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, American Institute of Aeronautics and Astronautics (2006), https://doi.org/10.2514/6.2006-112

  20. M. Sonntag, C.D. Munz, Shock capturing for discontinuous Galerkin methods using finite volume subcells, in Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, ed. by J. Fuhrmann, M. Ohlberger, C. Rohde (Springer International Publishing, 2014), pp. 945–953

    Google Scholar 

  21. M. Sonntag, C.D. Munz, Efficient parallelization of a shock capturing for discontinuous Galerkin methods using finite volume sub-cells. J. Sci. Comput. 70(3), 1262–1289 (2017). https://doi.org/10.1007/s10915-016-0287-5

    Article  MathSciNet  MATH  Google Scholar 

  22. H.B. Stewart, B. Wendroff, Two-phase flow: models and methods. J. Comput. Phys. 56(3), 363–409 (1984). https://doi.org/10.1016/0021-9991(84)90103-7

    Article  MathSciNet  MATH  Google Scholar 

  23. E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Springer, Berlin, 2009). https://doi.org/10.1007/b79761

    Book  MATH  Google Scholar 

  24. J. Van der Waals, Over de Continuiteit van den Gas-en Vloeistoftoestand. Ph.D. thesis, University of Leiden (1873)

    Google Scholar 

  25. A.B. Wood, A Textbook of Sound, 1st edn. (G. Bell and Sons, 1941)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Deutsche Forschungsgemeinschaft (DFG) through SFB-TRR 40 “Fundamental Technologies for the Development of Future Space-Transport-System Components under High Thermal and Mechanical Loads” and SFB-TRR 75 “Droplet dynamics under extreme ambient conditions” Computational resources have been provided by the Bundes-Höchstleistungsrechenzentrum Stuttgart (HLRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Föll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Föll, F., Hitz, T., Keim, J., Munz, CD. (2021). Towards High-Fidelity Multiphase Simulations: On the Use of Modern Data Structures on High Performance Computers. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds) High Performance Computing in Science and Engineering '19. Springer, Cham. https://doi.org/10.1007/978-3-030-66792-4_25

Download citation

Publish with us

Policies and ethics