Skip to main content

Drag Reduction by Surface Actuation

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering '19

Abstract

The flow over an DRA2303 wing section is controlled by spanwise traveling transversal surface waves. The actuated flow field is investigated by large-eddy simulation. Approximately \(74{\%}\) of the solid surface is deflected by a sinusoidal space- and time-dependent function in the wall-normal direction. Viscous drag reduction by \(8.6{\%}\) with a strong decrease of skin-friction in the favorable pressure gradient region and an overall drag decrease by \(7.5{\%}\) are achieved. Furthermore, a slight increase in lift is obtained for the external flow over a realistic geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Albers, P.S. Meysonnat, W. Schröder, Drag reduction via transversal wave motions of structured surfaces, in International Symposium on Turbulence & Shear Flow Phenomena (TSFP-10) (2017)

    Google Scholar 

  2. M. Albers, P.S. Meysonnat, W. Schröder, Actively reduced airfoil drag by transversal surface waves. Flow Turbul. Combust. 102(4), 865–886 (2019)

    Article  Google Scholar 

  3. P.H. Alfredsson, R. Örlü, Large-eddy breakup devices - a 40 years perspective from a Stockholm horizon. Flow Turbul. Combust. 100(4), 877–888 (2018)

    Article  Google Scholar 

  4. M. Atzori, R. Vinuesa, A. Stroh, B. Frohnapfel, P. Schlatter, Assessment of skin-friction-reduction techniques on a turbulent wing section, in 12th ERCOFTAC Symposium on Engineering Turbulence Modeling and Measurements (ETMM12) (2018)

    Google Scholar 

  5. H.L. Bai, Y. Zhou, W.G. Zhang, S.J. Xu, Y. Wang, R.A. Antonia, Active control of a turbulent boundary layer based on local surface perturbation. J. Fluid Mech. 750, 316 (2014)

    Article  Google Scholar 

  6. D.W. Bechert, G. Hoppe, W.E. Reif, On the drag reduction of the shark skin, in AIAA Paper No. 85–0546 (1985)

    Google Scholar 

  7. D. Bechert, R. Meyer, W. Hage, Drag reduction of airfoils with miniflaps - can we learn from dragonflies? in AIAA Paper No. 2000–2315 (2000)

    Google Scholar 

  8. J.P. Boris, F.F. Grinstein, E.S. Oran, R.L. Kolbe, New insights into large eddy simulation. Fluid Dyn. Res. 10(4–6), 199–228 (1992)

    Article  Google Scholar 

  9. S.L. Ceccio, Friction drag reduction of external flows with bubble and gas injection. Annu. Rev. Fluid Mech. 42(1), 183–203 (2010)

    Article  Google Scholar 

  10. K.S. Choi, X. Yang, B.R. Clayton, E.J. Glover, M. Atlar, B.N. Semenov, V.M. Kulik, Turbulent drag reduction using compliant surfaces. Proc. R. Soc. Lond. Ser. A 453(1965), 2229–2240 (1997)

    Google Scholar 

  11. Y. Du, G.E. Karniadakis, Suppressing wall turbulence by means of a transverse traveling wave. Science 288(5469), 1230–1234 (2000)

    Article  Google Scholar 

  12. Y. Du, V. Symeonidis, G.E. Karniadakis, Drag reduction in wall-bounded turbulence via a transverse travelling wave. J. Fluid Mech. 457, 1–34 (2002)

    Article  MathSciNet  Google Scholar 

  13. A. Feldhusen-Hoffmann, V. Statnikov, M. Klaas, W. Schröder, Investigation of shock-acoustic-wave interaction in transonic flow. Exp. Fluids 59(1), 15 (2017)

    Article  Google Scholar 

  14. J.L. Fulker, M.J. Simmons, An Experimental Investigation of Passive Shock/Boundary-Layer Control on an Aerofoil (Vieweg+Teubner Verlag, Wiesbaden, 1997), pp. 379–400

    Google Scholar 

  15. M. Gad-el-Hak, Flow Control : Passive, Active, and Reactive Flow Management (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  16. R. García-Mayoral, J. Jiménez, Hydrodynamic stability and breakdown of the viscous regime over riblets. J. Fluid Mech. 678, 317–347 (2011)

    Article  Google Scholar 

  17. G. Geiser, Thermoacoustic Noise Sources in Premixed Combustion (Verlag Dr. Hut, München, 2014)

    Google Scholar 

  18. J.W. Gose, K. Golovin, M. Boban, J.M. Mabry, A. Tuteja, M. Perlin, S.L. Ceccio, Characterization of superhydrophobic surfaces for drag reduction in turbulent flow. J. Fluid Mech. 845, 560–580 (2018)

    Article  MathSciNet  Google Scholar 

  19. R. Henke, “A320 HLF Fin” flight tests completed. Air & Space Eur. 1(2), 76–79 (1999)

    Article  Google Scholar 

  20. C.W. Hirt, A.A. Amsden, J.L. Cook, An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 14, 227–253 (1974)

    Article  Google Scholar 

  21. S.M. Hosseini, R. Vinuesa, P. Schlatter, A. Hanifi, D.S. Henningson, Direct numerical simulation of the flow around a wing section at moderate Reynolds number. Int. J. Heat Fluid Flow 61, 117–128 (2016)

    Article  Google Scholar 

  22. M. Itoh, S. Tamano, K. Yokota, S. Taniguchi, Drag reduction in a turbulent boundary layer on a flexible sheet undergoing a spanwise traveling wave motion. J. Turbul. 7, N27 (2006)

    Article  Google Scholar 

  23. J. Jeong, F. Hussain, On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MathSciNet  Google Scholar 

  24. J. Jiménez, Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36(1), 173–196 (2004)

    Article  MathSciNet  Google Scholar 

  25. J. Jiménez, A. Pinelli, The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335–359 (1999)

    Article  MathSciNet  Google Scholar 

  26. W.J. Jung, N. Mangiavacchi, R. Akhavan, Suppression of turbulence in wall bounded flows by high frequency spanwise oscillations. Phys. Fluids A 4(8), 1605–1607 (1992)

    Article  Google Scholar 

  27. Y. Kametani, K. Fukagata, R. Örlü, P. Schlatter, Effect of uniform blowing/suction in a turbulent boundary layer at moderate Reynolds number. Int. J. Heat Fluid Flow 55, 132–142 (2015)

    Article  Google Scholar 

  28. E. Kim, H. Choi, Space-time characteristics of a compliant wall in a turbulent channel flow. J. Fluid Mech. 756, 30–53 (2014)

    Article  MathSciNet  Google Scholar 

  29. S. Klumpp, M. Meinke, W. Schröder, Numerical simulation of riblet controlled spatial transition in a zero-pressure-gradient boundary layer. Flow Turbul. Combust. 85(1), 57–71 (2010)

    Google Scholar 

  30. S. Klumpp, M. Meinke, W. Schröder, Drag reduction by spanwise transversal surface waves. J. Turbul. 11 (2010)

    Google Scholar 

  31. S.R. Koh, P. Meysonnat, V. Statnikov, M. Meinke, W. Schröder, Dependence of turbulent wall-shear stress on the amplitude of spanwise transversal surface waves. Comput. Fluids 119, 261–275 (2015)

    Article  MathSciNet  Google Scholar 

  32. M.S. Liou, C. Steffen, A new flux splitting scheme. J. Comput. Phys. 107, 23–39 (1993)

    Article  MathSciNet  Google Scholar 

  33. P.Q. Liu, H.S. Duan, J.Z. Chen, Y.W. He, Numerical study of suction-blowing flow control technology for an airfoil. J. Aircr. 47(1), 229–239 (2010)

    Article  Google Scholar 

  34. M. Luhar, A. Sharma, B. McKeon, A framework for studying the effect of compliant surfaces on wall turbulence. J. Fluid Mech. 768, 415–441 (2015)

    Article  MathSciNet  Google Scholar 

  35. M. Meinke, W. Schröder, E. Krause, T. Rister, A comparison of second- and sixth-order methods for large-eddy simulations. Comput. Fluids 31(4), 695–718 (2002)

    Article  Google Scholar 

  36. P.S. Meysonnat, S.R. Koh, B. Roidl, W. Schröder, Impact of transversal traveling surface waves in a non-zero pressure gradient turbulent boundary layer flow. Appl. Math. Comput. 272, 498–507 (2016)

    Article  MathSciNet  Google Scholar 

  37. P.S. Meysonnat, D. Roggenkamp, W. Li, B. Roidl, W. Schröder, Experimental and numerical investigation of transversal traveling surface waves for drag reduction. Eur. J. Mech. B. Fluids 55, 313–323 (2016)

    Article  MathSciNet  Google Scholar 

  38. P. Moin, T. Shih, D. Driver, N.N. Mansour, Direct numerical simulation of a three dimensional turbulent boundary layer. Phys. Fluids A 2(10), 1846–1853 (1990)

    Article  Google Scholar 

  39. R. Nakanishi, H. Mamori, K. Fukagata, Relaminarization of turbulent channel flow using traveling wave-like wall deformation. Int. J. Heat Fluid Flow 35, 152–159 (2012)

    Article  Google Scholar 

  40. M. Perlin, D.R. Dowling, S.L. Ceccio, Freeman scholar review: passive and active skin-friction drag reduction in turbulent boundary layers. J. Fluids Eng. 138(9), 091104–091116 (2016)

    Google Scholar 

  41. M. Quadrio, Drag reduction in turbulent boundary layers by in-plane wall motion. Philos. Trans. R. Soc. Lond. Ser. A 369(1940), 1428–1442 (2011)

    Google Scholar 

  42. M. Quadrio, P. Ricco, C. Viotti, Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161 (2009)

    Article  MathSciNet  Google Scholar 

  43. J. Reneaux, Overview on drag reduction technologies for civil transport aircraft, in European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS) (2004)

    Google Scholar 

  44. B. Roidl, M. Meinke, W. Schröder, Zonal RANS-LES computation of transonic airfoil flow, in AIAA Paper No. 2011–3974 (2011)

    Google Scholar 

  45. P. Schlatter, R. Örlü, Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects. J. Fluid Mech. 710, 5–34 (2012)

    Google Scholar 

  46. H. Shan, L. Jiang, C. Liu, Direct numerical simulation of flow separation around a NACA 0012 airfoil. Comput. Fluids 34(9), 1096–1114 (2005)

    Google Scholar 

  47. P.R. Spalart, J.D. McLean, Drag reduction: enticing turbulence, and then an industry. Philos. Trans. R. Soc. Lond. Ser. A 369(1940), 1556–1569 (2011)

    Google Scholar 

  48. E. Stanewsky, J. Délery, J. Fulker, P. de Matteis, Synopsis of the project EUROSHOCK II, in Drag Reduction by Shock and Boundary Layer Control, ed. by E. Stanewsky, J. Délery, J. Fulker, P. de Matteis (Springer, Berlin, 2002), pp. 1–124

    Google Scholar 

  49. J. Szodruch, Viscous drag reduction on transport aircraft, in AIAA Paper No. 91–0685 (1991)

    Google Scholar 

  50. S. Tamano, M. Itoh, Drag reduction in turbulent boundary layers by spanwise traveling waves with wall deformation. J. Turbul. 13, N9 (2012)

    Google Scholar 

  51. N. Tomiyama, K. Fukagata, Direct numerical simulation of drag reduction in a turbulent channel flow using spanwise traveling wave-like wall deformation. Phys. Fluids 25(10), 105115 (2013)

    Article  Google Scholar 

  52. R. Vinuesa, P. Schlatter, Skin-friction control of the flow around a wing section through uniform blowing, in European Drag Reduction and Flow Control Meeting (EDRFCM 2017) (2017)

    Google Scholar 

  53. R. Vinuesa, C. Prus, P. Schlatter, H.M. Nagib, Convergence of numerical simulations of turbulent wall-bounded flows and mean cross-flow structure of rectangular ducts. Meccanica 51(12), 3025–3042 (2016)

    Article  MathSciNet  Google Scholar 

  54. R. Vinuesa, P.S. Negi, M. Atzori, A. Hanifi, D.S. Henningson, P. Schlatter, Turbulent boundary layers around wing sections up to ${Re}_c = 1,000,000$. Int. J. Heat Fluid Flow 72, 86–99 (2018)

    Article  Google Scholar 

  55. M. Walsh, L. Weinstein, Drag and heat transfer on surfaces with small longitudinal fins, in 11th Fluid and Plasma Dynamics Conference (1978), p. 1161

    Google Scholar 

  56. C. Zhang, J. Wang, W. Blake, J. Katz, Deformation of a compliant wall in a turbulent channel flow. J. Fluid Mech. 823, 345–390 (2017)

    Article  MathSciNet  Google Scholar 

  57. H. Zhao, J.Z. Wu, J.S. Luo, Turbulent drag reduction by traveling wave of flexible wall. Fluid Dyn. Res. 34(3), 175–198 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Albers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Albers, M., Meinke, M., Schröder, W. (2021). Drag Reduction by Surface Actuation. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds) High Performance Computing in Science and Engineering '19. Springer, Cham. https://doi.org/10.1007/978-3-030-66792-4_20

Download citation

Publish with us

Policies and ethics