Skip to main content

Ray Tracing Based Path Loss Modeling for UAV-to-Ground mmWave Channels in Campus Scenario

  • Conference paper
  • First Online:
Machine Learning and Intelligent Communications (MLICOM 2020)

Abstract

In this paper, based on extensive ray tracing (RT) simulation data in campus scenario, a tailored path loss (PL) model for unmanned aerial vehicle (UAV) assisted air-to-ground (A2G) millimeter wave (mmWave) communications is proposed. The new model originates from the classic Close-in (CI) model, but takes the factor of UAV height into account with the help of extensive RT simulated data under the A2G campus scenario. The simulation and analysis results show that the proposed PL model matches better than the original CI model for certain trajectory at any UAV height. This modeling method can also be extended to any A2G scenarios by adjusting the parameters of model with RT simulated data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rappaport, T.S., MacCartney, G.R., Samimi, M.K., Sun, S.: Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Trans. Commun. Syst. 63(9), 3029–3056 (2015)

    Article  Google Scholar 

  2. Majed, M.B., Rahman, T.A., Aziz, O.A.: Propagation path loss modeling and outdoor coverage measurements review in millimeter wave bands for 5G cellular communications. Int. J. Electron. Comput. Eng. 8(4), 2254–2269 (2018)

    Google Scholar 

  3. Fan, W., Carton, I., Kyosti, P., Karstensen, A., Jamsa, T., et al.: A step toward 5G in 2020: low-cost OTA performance evaluation of massive MIMO base stations. IEEE Antennas Propag. Mag. 59(1), 38–47 (2017)

    Article  Google Scholar 

  4. Zhang, J., Shafi, M., Molisch, A., Tufvesson, F., Wu, S., et al.: Channel models and measurements for 5G. IEEE Commun. Mag. 56(12), 12–13 (2018)

    Article  Google Scholar 

  5. Wang, C.-X., Bian, J., Sun, J., Zhang, W., Zhang, M.: A survey of 5G channel measurements and models. IEEE Commun. Surv. Tuts. 20(4), 3142–3168 (2018)

    Article  Google Scholar 

  6. Hindia, M.N., I-Samman, A.M.A., Rahman, T.A., Yazdani, T.M.: Outdoor large-scale path loss characterization in an urban environment at 26, 28, 36, and 38 GHz. Phys. Commun. 27(1), 150–160 (2018)

    Article  Google Scholar 

  7. Rappaport, T.S., Xing, Y., MacCartney, G.R., Molisch, A.F., Mellios, E., Zhang, J.: Overview of millimeter wave communications for fifth-generation (5G) wireless networks-with a focus on propagation models. IEEE Trans. Antennas Propag. 65(12), 6213–6230 (2017)

    Article  Google Scholar 

  8. Zhou, A., Huang, J., Sun, J., Zhu, Q., Wang, C.X., Yang, Y.: 60 GHz channel measurements and ray tracing modeling in an indoor environment. In: Proceedings of the WCSP 2017, Nanjing, China, December 2017

    Google Scholar 

  9. Ji, W., Liu, Y.J., Li, S.D.: Study on the propagation characteristics of indoor millimeter-wave at 37.2 GHz by SBR method. In: Proceedings of the ISAPE, Hangzhou, China, December 2018

    Google Scholar 

  10. Zhong, W., Xu, L., Zhu, Q., Chen, X., Zhou, J.: MmWave beamforming for UAV communications with unstable beam pointing. China Commun. 16(1), 37–46 (2019)

    Article  Google Scholar 

  11. Zhu, Q., et al.: A novel 3D non-stationary wireless MIMO channel simulator and hardware emulator. IEEE Trans. Commun. 66(9), 3865–3878 (2018)

    Article  Google Scholar 

  12. Zhu, Q., Wang, Y., Jiang, K., Chen, X., Zhong, W., Ahmed, N.: 3D non-stationary geometry-based multi-input multi-output channel model for UAV-ground communication systems. IET Microw. Antennas Propag. 13(8), 1104–1112 (2019)

    Article  Google Scholar 

  13. Galkin, B., Kibilda, J., DaSilva, L.A.: Backhaul for low-altitude UAVs in urban environments. In: Proceedings of the ICC 2018, Kansas City, MO, USA, July 2018

    Google Scholar 

  14. Matolak, D.W., Sun, R.: Air-ground channel characterization for unmanned aircraft systems-Part I: methods, measurements, and models for over-water settings. IEEE Trans. Veh. Technol. 66(1), 26–44 (2016)

    Article  Google Scholar 

  15. Shi, Y., Enami, R., Wensowitch, J., Camp, J.: Measurement-based characterization of LOS and NLOS drone-to-ground channels. In: Proceedings of the WCNC 2018, Barcelona, Spain, April 2018

    Google Scholar 

  16. Zhu, Q., et al.: Spatial correlations of a 3-D non-stationary MIMO channel model with 3-D antenna arrays and 3-D arbitrary trajectories. IEEE Wireless Commun. Lett. 8(2), 512–515 (2019)

    Article  Google Scholar 

  17. Cai, X., et al.: An empirical air-to-ground channel model based on passive measurements in LTE. IEEE Trans. Veh. Technol. 68(2), 1140–1154 (2019)

    Article  Google Scholar 

  18. Chen, J., Raye, D., Khawaja, W., Sinha, P., Guvenc, I.: Impact of 3D UWB antenna radiation pattern on air-to-ground drone connectivity. In: Proceedings of the VTC 2018, Chicago, IL, USA, April 2019

    Google Scholar 

  19. Cui, Z., Briso-Rodrguez, C., Guan, K., Calvo-Ramrez, C., Ai, B., Zhong, Z.: Measurement-based modeling and analysis of UAV air-ground channels at 1 and 4 GHz. IEEE Antennas Wireless Propag. Lett. 18(9), 1804–1808 (2019)

    Article  Google Scholar 

  20. Chu, X., Briso, C., He, D., Yin, X., Dou, J.: Channel modeling for low-altitude UAV in suburban environments based on ray tracer. In: Proceedings of the EuCAP 2018, London, UK, April 2018

    Google Scholar 

  21. Cui, Z., et al.: Analytical modeling of UAV-to-vehicle propagation channels in built-up areas. IEEE Wireless Commun. Lett. (2019)

    Google Scholar 

  22. Khawaja, W., Ozdemir, O., Guvenc, I.: UAV air-to-ground channel characterization for mmWave systems. In: Proceedings of the VTC 2017, Toronto, ON, Canada, September 2017

    Google Scholar 

  23. Wang, X., Gursoy, M.C.: Coverage analysis for energy-harvesting UAV-assisted mmWave cellular networks. IEEE J. Sel. Areas Commun. 37(12), 2832–2850 (2019)

    Article  Google Scholar 

  24. Yang, G., Zhang, Y., He, Z., Wen, J., Ji, Z., Li, Y.: Machine-learning-based prediction methods for path loss and delay spread in air-to-ground millimetre-wave channels. IET Micro. Antennas Propag. 13(8), 1113–1121 (2019)

    Article  Google Scholar 

  25. Dutta, S., Hsieh, F., Vook, F.W.: HAPS based communication using mmWave bands. In: Proceedings of the ICC 2019, Shanghai, China, July 2019

    Google Scholar 

  26. Meng, S., Su, X., Wen, Z., Dai, X., Zhou, Y., Yang, W.: Robust drones formation control in 5G wireless sensor network using mmWave. Wireless Commun. Mob. Comput. 18(1), 1–7 (2018)

    Google Scholar 

  27. Hu, S., Guo, L.X., Liu, Z.Y.: A fast ray-tracing algorithm for rugged terrain. In: Proceedings of the CSQRWC 2019, Taiyuan, China, July 2019

    Google Scholar 

  28. ITU-R: Rec. P.1410-2 Propagation data and prediction methods for the design of terrestrial troadband millimetric radio access systems. P Series, Radiowave propagation (2003)

    Google Scholar 

  29. Cheng, L., Zhu, Q., Wang, C.-X., Zhong, W., Hua, B., Jiang, S.: Modeling and simulation for UAV air-to-ground mmWave channels. In: Proceedings of the EuCAP20, Copenhagen, pp. 1–5, March 2020

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Scientific Instrument and Equipment Development Project under Grant No. 61827801, the Fundamental Research Funds for the Central Universities under Grant No. NS2020026 and Open Foundation for Graduate Innovation of NUAA under Grant No. KFJJ 20190418.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaomin Chen or Qiuming Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, M. et al. (2021). Ray Tracing Based Path Loss Modeling for UAV-to-Ground mmWave Channels in Campus Scenario. In: Guan, M., Na, Z. (eds) Machine Learning and Intelligent Communications. MLICOM 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 342. Springer, Cham. https://doi.org/10.1007/978-3-030-66785-6_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66785-6_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66784-9

  • Online ISBN: 978-3-030-66785-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics