Skip to main content

Digital Image Inpainting Techniques for Cultural Heritage Preservation and Restoration

  • Chapter
  • First Online:
Data Analytics for Cultural Heritage

Abstract

Physical artefacts or ancient artworks including manuscripts and photographs at heritage sites are likely to have significantly damaged or broken-down regions. Therefore, digital image restoration is utilised in cultural heritage (CH) preservation and restoration by taking digital photographs of the historical artefacts. Then, numerous image processing techniques including image denoising, image decomposition, image deblurring, image inpainting, etc. can be applied as a post-processing step to improve the quality of these photographs. Of these techniques, image inpainting plays a crucial role in filling missing parts and recovering damaged regions of digital images. This chapter presents several digital image inpainting techniques that can be used to perform inpainting for CH. Also, this chapter presents a new two-stage inpainting method for cultural heritage digital image using Delaunay triangulation-based interpolation and exemplar-based inpainting method. This method, first, assigns colours to the unknown pixels, i.e. the selected region to be inpainted, from the nearest known pixels of the images using Delaunay triangulation-based interpolation. Then, it employs an exemplar-based algorithm to perform the inpainting on the interpolated image. The experimental results showed that our proposed method can produce better results than the stand-alone exemplar-based inpainting method. Moreover, examples of inpainting tasks showed the potential of our proposed method in producing high-quality inpainting results and, at the same time, overcome the limitations of exemplar-based inpainting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 417–424 (2000)

    Google Scholar 

  2. Paunwala, C.N.: Image inpainting evolution: a survey. In: Encyclopedia of Image Processing, p. 293. CRC Press, Boca Raton (2018)

    Google Scholar 

  3. Yoo, S., Park, R.H.: Red-eye detection and correction using inpainting in digital photographs. IEEE Trans. Consum. Electron. 55(3), 1006–1014 (2009)

    Article  Google Scholar 

  4. Chan, T.F., Yip, A.M., Park, F.E.: Simultaneous total variation image inpainting and blind deconvolution. Int. J. Imaging Syst. Technol. 15(1), 92–102 (2005)

    Article  Google Scholar 

  5. Jones, B.G. (ed.): Protecting Historic Architecture and Museum Collections from Natural Disasters. Elsevier, Burlington (2014)

    Google Scholar 

  6. Bevan, R.: 10 Heritage Sites Lost to Disaster and War. Google Arts & Culture. https://artsandculture.google.com/theme/10-heritage-sites-lost-to-disaster-and-war/kALyuo79hhrkLQ?hl=en. Last accessed on 14 May 2020

  7. Guillemot, C., Le Meur, O.: Image inpainting: overview and recent advances. IEEE Signal Process. Mag. 31(1), 127–144 (2013)

    Article  Google Scholar 

  8. Chang, L., Chongxiu, Y.: New interpolation algorithm for image inpainting. Phys. Procedia. 22, 107–111 (2011)

    Article  Google Scholar 

  9. Amanatiadis, A., Andreadis, I.: A survey on evaluation methods for image interpolation. Meas. Sci. Technol. 20(10), 104015 (2009)

    Article  Google Scholar 

  10. Thévenaz, P., Blu, T., Unser, M.: Interpolation revisited [medical images application]. IEEE Trans. Med. Imaging. 19(7), 739–758 (2000)

    Article  Google Scholar 

  11. Keys, R.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 29(6), 1153–1160 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Unser, M., Aldroubi, A., Eden, M.: Fast B-spline transforms for continuous image representation and interpolation. IEEE Trans. Pattern Anal. Mach. Intell. 3, 277–285 (1991)

    Article  Google Scholar 

  13. Carey, W.K., Chuang, D.B., Hemami, S.S.: Regularity-preserving image interpolation. IEEE Trans. Image Process. 8(9), 1293–1297 (1999)

    Article  Google Scholar 

  14. Zhang, L., Wu, X.: An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans. Image Process. 15(8), 2226–2238 (2006)

    Article  Google Scholar 

  15. Zhang, X., Wu, X.: Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation. IEEE Trans. Image Process. 17(6), 887–896 (2008)

    Article  MathSciNet  Google Scholar 

  16. Hwang, J.W., Lee, H.S.: Adaptive image interpolation based on local gradient features. IEEE Signal Process. Lett. 11(3), 359–362 (2004)

    Article  Google Scholar 

  17. Dong, W., Zhang, L., Lukac, R., Shi, G.: Sparse representation-based image interpolation with nonlocal autoregressive modeling. IEEE Trans. Image Process. 22(4), 1382–1394 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dyn, N., Levin, D., Rippa, S.: Data dependent triangulations for piecewise linear interpolation. IMA J. Numer. Anal. 10(1), 137–154 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Takagi, H., Aoyama, S., Makino, R., Hatsuda, T., Nakata, S., Tanaka, S.: Field approximation using piecewise polynomials for fast volume rendering on GPU. In: Advanced Methods, Techniques, and Applications in Modeling and Simulation, pp. 498–505. Springer, Tokyo (2012)

    Chapter  Google Scholar 

  20. Akima, H.: A new method of interpolation and smooth curve fitting based on local procedures. J. ACM (JACM). 17(4), 589–602 (1970)

    Article  MATH  Google Scholar 

  21. Fritsch, F.N., Carlson, R.E.: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 17(2), 238–246 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  22. Amidror, I.: Scattered data interpolation methods for electronic imaging systems: a survey. J. Electron. Imaging. 11(ARTICLE), 157–176 (2002)

    Article  Google Scholar 

  23. Janarthanan, V., Jananii, G.: A detailed survey on various image inpainting techniques. Bonfring Int. J. Adv. Image Process. 2(2), 01–03 (2012)

    Article  Google Scholar 

  24. Schönlieb, C.B.: Partial Differential Equation Methods for Image Inpainting, vol. 29. Cambridge University Press, Cambridge (2015)

    Book  MATH  Google Scholar 

  25. Bertalmio, M., Bertozzi, A.L., Sapiro, G.: Navier-stokes, fluid dynamics, and image and video inpainting. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, p. I (2001)

    Chapter  Google Scholar 

  26. Caselles, V., Morel, J.M., Sbert, C.: An axiomatic approach to image interpolation. IEEE Trans. Image Process. 7(3), 376–386 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No. 98CB36269), pp. 259–263 (1998)

    Chapter  Google Scholar 

  28. Shen, J., Chan, T.F.: Mathematical models for local nontexture inpaintings. SIAM J. Appl. Math. 62(3), 1019–1043 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chan, T.F., Shen, J.: Nontexture inpainting by curvature-driven diffusions. J. Vis. Commun. Image Represent. 12(4), 436–449 (2001)

    Article  Google Scholar 

  30. Fadili, M.J., Starck, J.L., Murtagh, F.: Inpainting and zooming using sparse representations. Comput. J. 52(1), 64–79 (2009)

    Article  Google Scholar 

  31. Shen, B., Hu, W., Zhang, Y., Zhang, Y.J.: Image inpainting via sparse representation. In: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 697–700 (2009)

    Chapter  Google Scholar 

  32. Fadili, M.J., Starck, J.L.: Em algorithm for sparse representation-based image inpainting. In: IEEE International Conference on Image Processing 2005, vol. 2, pp. II–61 (2005)

    Chapter  Google Scholar 

  33. Ogawa, T., Haseyama, M.: Image inpainting based on sparse representations with a perceptual metric. EURASIP J. Adv. Signal Process. 2013(1), 179 (2013)

    Article  Google Scholar 

  34. Zhang, J., Zhao, D., Gao, W.: Group-based sparse representation for image restoration. IEEE Trans. Image Process. 23(8), 3336–3351 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration. IEEE Trans. Image Process. 17(1), 53–69 (2007)

    Article  MathSciNet  Google Scholar 

  36. Xu, Z., Sun, J.: Image inpainting by patch propagation using patch sparsity. IEEE Trans. Image Process. 19(5), 1153–1165 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mahajan, K.S., Vaidya, M.B.: Image in painting techniques: a survey. IOSR J. Comput. Eng. (IOSRJCE). 5(4), 45–49 (2012)

    Article  Google Scholar 

  38. Heeger, D.J., Bergen, J.R.: Pyramid-based texture analysis/synthesis. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 229–238 (1995)

    Google Scholar 

  39. Grossauer, H.: A combined PDE and texture synthesis approach to inpainting. In: European Conference on Computer Vision, pp. 214–224. Springer, Berlin/Heidelberg (2004)

    Google Scholar 

  40. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1033–1038 (1999, September)

    Chapter  Google Scholar 

  41. Ashikhmin, M.: Synthesizing natural textures. In: Proceedings of the 2001 Symposium on Interactive 3D Graphics, pp. 217–226 (2001)

    Chapter  Google Scholar 

  42. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 341–346 (2001)

    Chapter  Google Scholar 

  43. Wei, L.Y., Levoy, M.: Fast texture synthesis using tree-structured vector quantization. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 479–488 (2000)

    Google Scholar 

  44. Liang, L., Liu, C., Xu, Y.Q., Guo, B., Shum, H.Y.: Real-time texture synthesis by patch-based sampling. ACM Trans. Graph. (ToG). 20(3), 127–150 (2001)

    Article  Google Scholar 

  45. Nealen, A., Alexa, M.: Hybrid Texture Synthesis, pp. 97–105. Techn. Univ., Fachbereich Informatik, Fachgebiet Graphisch-Interaktive Systeme (2003)

    Google Scholar 

  46. Yamauchi, H., Haber, J., Seidel, H.P.: Image restoration using multiresolution texture synthesis and image inpainting. In: Proceedings Computer Graphics International 2003, pp. 120–125 (2003, July)

    Chapter  Google Scholar 

  47. Gatys, L., Ecker, A.S., Bethge, M.: Texture synthesis using convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 262–270. Morgan Kaufmann Publishers, San Mateo (2015)

    Google Scholar 

  48. Jetchev, N., Bergmann, U., Vollgraf, R.: Texture synthesis with spatial generative adversarial networks. arXiv preprint arXiv: 1611.08207 (2016)

    Google Scholar 

  49. Laube, P.: CNN texture synthesis for high-resolution image inpainting. In: Machine Learning Methods for Reverse Engineering of Defective Structured Surfaces, pp. 121–141. Springer Vieweg, Wiesbaden (2020)

    Chapter  Google Scholar 

  50. Criminisi, A., Pérez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. IEEE Trans. Image Process. 13(9), 1200–1212 (2004)

    Article  Google Scholar 

  51. Criminisi, A., Perez, P., Toyama, K.: Object removal by exemplar-based inpainting. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings, vol. 2, p. II (2003)

    Google Scholar 

  52. Cheng, W.H., Hsieh, C.W., Lin, S.K., Wang, C.W., Wu, J.L.: Robust algorithm for exemplar-based image inpainting. In: Proceedings of International Conference on Computer Graphics, Imaging and Visualization, pp. 64–69 (2005)

    Google Scholar 

  53. Chen, Q., Zhang, Y., Liu, Y.: Image inpainting with improved exemplar-based approach. In: International Workshop on Multimedia Content Analysis and Mining, pp. 242–251. Springer, Berlin/Heidelberg (2007)

    Chapter  Google Scholar 

  54. Hung, J.C., Huang, C.H., Liao, Y.C., Tang, N.C., Chen, T.J.: Exemplar-based image inpainting base on structure construction. JSW. 3(8), 57–64 (2008)

    Article  Google Scholar 

  55. Wong, A., Orchard, J.: A nonlocal-means approach to exemplar-based inpainting. In: 2008 15th IEEE International Conference on Image Processing, pp. 2600–2603 (2008)

    Chapter  Google Scholar 

  56. Goyal, P., Diwakar, S.: Fast and enhanced algorithm for exemplar-based image inpainting. In: 2010 Fourth Pacific-Rim Symposium on Image and Video Technology, pp. 325–330 (2010)

    Google Scholar 

  57. Yin, L., Chang, C.: An effective exemplar-based image inpainting method. In: 2012 IEEE 14th International Conference on Communication Technology, pp. 739–743 (2012, November)

    Google Scholar 

  58. Liu, Y., Caselles, V.: Exemplar-based image inpainting using multiscale graph cuts. IEEE Trans. Image Process. 22(5), 1699–1711 (2012)

    MathSciNet  MATH  Google Scholar 

  59. Zhang, Q., Lin, J.: Exemplar-based image inpainting using color distribution analysis. J. Inf. Sci. Eng. 28(4), 641–654 (2012)

    MathSciNet  Google Scholar 

  60. Choi, J.H., Hahm, C.H.: An exemplar-based image inpainting method with search region prior. In: 2013 IEEE 2nd Global Conference on Consumer Electronics (GCCE), pp. 68–71 (2013)

    Chapter  Google Scholar 

  61. Wang, J., Lu, K., Pan, D., He, N., Bao, B.K.: Robust object removal with an exemplar-based image inpainting approach. Neurocomputing. 123, 150–155 (2014)

    Article  Google Scholar 

  62. Patel, A.G., Kumar, S., Prajapati, A.D.: Improved exemplar-based image inpainting using structure tensor. Int. J. Comput. Appl. 96(15), 9–14 (2014)

    Google Scholar 

  63. Patel, J., Sarode, T.K.: Exemplar based image inpainting with reduced search region. Int. J. Comput. Appl. 92(12), 27–33 (2014)

    Google Scholar 

  64. Liang, Z., Yang, G., Ding, X., Li, L.: An efficient forgery detection algorithm for object removal by exemplar-based image inpainting. J. Vis. Commun. Image Represent. 30, 75–85 (2015)

    Article  Google Scholar 

  65. Zhang, D., Liang, Z., Yang, G., Li, Q., Li, L., Sun, X.: A robust forgery detection algorithm for object removal by exemplar-based image inpainting. Multimed. Tools Appl. 77(10), 11823–11842 (2018)

    Article  Google Scholar 

  66. Ahmed, M.W., Abdulla, A.A.: Quality improvement for exemplar-based image inpainting using a modified searching mechanism. UHD J. Sci. Technol. 4(1), 1–8 (2020)

    Article  Google Scholar 

  67. Buyssens, P., Daisy, M., Tschumperlé, D., Lézoray, O.: Exemplar-based inpainting: technical review and new heuristics for better geometric reconstructions. IEEE Trans. Image Process. 24(6), 1809–1824 (2015)

    MathSciNet  MATH  Google Scholar 

  68. Shroff, M., Bombaywala, M.S.R.: A qualitative study of exemplar based image inpainting. SN Appl. Sci. 1(12), 1730 (2019)

    Article  Google Scholar 

  69. Chhabra, J.K., Birchha, M.V.: Detailed survey on exemplar-based image inpainting techniques. Int. J. Comput. Sci. Inf. Technol. 5(5), 6350–6635 (2014)

    Google Scholar 

  70. Jia, J., Tang, C.K.: Inference of segmented color and texture description by tensor voting. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 771–786 (2004)

    Article  Google Scholar 

  71. Wu, J., Ruan, Q.: A novel hybrid image inpainting model. In: 2008 International Conference on Audio, Language and Image Processing, pp. 138–142 (2008)

    Google Scholar 

  72. Devasruthi, D., Menon, H.P., Narayanankutty, K.A.: FE-BEMD and exemplar-based hybrid image inpainting for occlusion removal. Int. J. Comput. Appl. 28(8), 38–44 (2011)

    Google Scholar 

  73. Zhao, M., Li, S.: Hybrid inpainting algorithm based on sparse representation and fast inpainting method. Int. J. Dig. Content Technol. Appl. 5(7), 239–247 (2011)

    Google Scholar 

  74. Sun, J., Yuan, L., Jia, J., Shum, H.Y.: Image completion with structure propagation. In: ACM SIGGRAPH 2005 Papers, pp. 861–868 (2005)

    Chapter  Google Scholar 

  75. Richard, M.M.O.B.B., Chang, M.Y.S.: Fast digital image inpainting. In: Appeared in the Proceedings of the International Conference on Visualization, Imaging and Image Processing (VIIP 2001), Marbella, Spain, pp. 106–107 (2001)

    Google Scholar 

  76. Bornemann, F., März, T.: Fast image inpainting based on coherence transport. J. Math. Imaging Vision. 28(3), 259–278 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  77. Patel, H.N.: A survey on different techniques for image inpainting. Int. Res. J. Eng. Technol. (IRJET). 3, 340 (2016)

    Google Scholar 

  78. Cai, N., Su, Z., Lin, Z., Wang, H., Yang, Z., Ling, B.W.K.: Blind inpainting using the fully convolutional neural network. Vis. Comput. 33(2), 249–261 (2017)

    Article  Google Scholar 

  79. Sasaki, K., Iizuka, S., Simo-Serra, E., Ishikawa, H.: Joint gap detection and inpainting of line drawings. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5725–5733 (2017)

    Google Scholar 

  80. Mao, X., Shen, C., Yang, Y.B.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: Advances in Neural Information Processing Systems, pp. 2802–2810. Morgan Kaufmann Publishers, San Mateo (2016)

    Google Scholar 

  81. Sidorov, O., Yngve Hardeberg, J.: Deep hyperspectral prior: single-image denoising, inpainting, super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 0–0 (2019)

    Google Scholar 

  82. Zhu, X., Qian, Y., Zhao, X., Sun, B., Sun, Y.: A deep learning approach to patch-based image inpainting forensics. Signal Process. Image Commun. 67, 90–99 (2018)

    Article  Google Scholar 

  83. Ren, J.S., Xu, L., Yan, Q., Sun, W.: Shepard convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 901–909 (2015)

    Google Scholar 

  84. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680. Morgan Kaufmann Publishers, San Mateo (2014)

    Google Scholar 

  85. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA (2016)

    MATH  Google Scholar 

  86. Jboor, N.H., Belhi, A., Al-Ali, A.K., Bouras, A., Jaoua, A.: Towards an inpainting framework for visual cultural heritage. In: 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), pp. 602–607 (2019)

    Chapter  Google Scholar 

  87. Liu, H., Lu, G., Bi, X., Yan, J., Wang, W.: Image inpainting based on generative adversarial networks. In: 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp. 373–378 (2018)

    Chapter  Google Scholar 

  88. Demir, U., Unal, G.: Patch-based image inpainting with generative adversarial networks. arXiv preprint arXiv:1803.07422 (2018)

    Google Scholar 

  89. Parisotto, S.: MATLAB Codes for the Image Inpainting Problem. https://www.mathworks.com/matlabcentral/fileexchange/55326-matlab-codes-for-the-image-inpainting-problem (2020). MATLAB Central File Exchange. Retrieved May 18, 2020

  90. Schönlieb, C.-B. Higher-Order Total Variation Inpainting. https://www.mathworks.com/matlabcentral/fileexchange/34356-higher-order-total-variation-inpainting (2020). MATLAB Central File Exchange. Retrieved May 18, 2020

  91. Basak, S.: ImageCompletion-DCGAN. Github. https://github.com/saikatbsk/ImageCompletion-DCGAN (2017). Accessed 15 May 2020

  92. Nicolas, B.: Image Inpainting via Dictionary Learning and Sparse Representation. Github. https://github.com/NicolasBizzozzero/Inpainting (2019)

  93. zyh, Awesome-Inpainting-Tech. Github. https://github.com/1900zyh/Awesome-Image-Inpainting (2020)

  94. Huang, C., Yoshida, K.: Evaluations of Image Completion Algorithms: Exemplar-Based Inpainting vs. Deep Convolutional GAN

    Google Scholar 

  95. Han, D.: Comparison of commonly used image interpolation methods. In: Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering. Atlantis Press (2013)

    Google Scholar 

  96. Cuomo, S., Galletti, A., Giunta, G., Marcellino, L.: A novel triangle-based method for scattered data interpolation. Appl. Math. Sci. 8(134), 6717–6724 (2014)

    Google Scholar 

  97. WikiArt.org: WikiArt.org – visual art encyclopedia. Available: https://www.wikiart.org/ (15 May 2020)

  98. Pixnio: Free images for anyone and any use. Available: https://pixnio.com/ (15 May 2020)

  99. Pxfuel: Royalty free stock photos free & unlimited download. Available: https://www.pxfuel.com/ (15 May 2020)

  100. Wang, Z., et al.: Image quality assessment: from error visibility to structural similarity. In: Image Processing, IEEE Transactions on 13.4, pp. 600–612 (2004)

    Google Scholar 

  101. Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 2010 20th International Conference on Pattern Recognition, pp. 2366–2369 (2010)

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was made possible by NPRP grant 9-181-1-036 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors (www.ceproqha.qa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosameldin Osman Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, H.O., Alfaqheri, T., Sadka, A.H. (2021). Digital Image Inpainting Techniques for Cultural Heritage Preservation and Restoration. In: Belhi, A., Bouras, A., Al-Ali, A.K., Sadka, A.H. (eds) Data Analytics for Cultural Heritage. Springer, Cham. https://doi.org/10.1007/978-3-030-66777-1_5

Download citation

Publish with us

Policies and ethics