Skip to main content

A Learning Approach for Optimizing Robot Behavior Selection Algorithm

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12595))

Included in the following conference series:

Abstract

Algorithms are the heart of each robotics system. A specific class of algorithm embedded in robotics systems is the so-called behavior – or action – selection algorithm. These algorithms select an action a robot should take, when performing a specific task. The action selection is determined by the parameters of the algorithm. However, manually choosing a proper configuration within the high-dimensional parameter space of the behavior selection algorithm is a non-trivial and demanding task. In this paper, we show how this problem can be addressed with supervised learning techniques. Our method starts by learning the algorithm behavior from the parameter space according to environment features, then bootstrap itself into a more robust framework capable of self-adjusting robot parameters in real-time. We demonstrate our concept on a set of examples, including simulations and real world experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bajcsy, A., Losey, D. P., O’Malley, M. K., Dragan, A.D.: Learning from physical human corrections, one feature at a time. In: Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, pp. 141–149 (2018)

    Google Scholar 

  2. DeMers, D., Kreutz-Delgado, K.: Learning global direct inverse kinematics. In: Advances in Neural Information Processing Systems, pp. 589–595 (1992)

    Google Scholar 

  3. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 4(1), 23–33 (1997)

    Article  Google Scholar 

  4. Frochte, J., Marsland, S.: A learning approach for Ill-posed optimization problems. In: Le, T.D., et al. (eds.) AusDM 2019. CCIS, vol. 1127, pp. 16–27. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-1699-3_2

    Chapter  Google Scholar 

  5. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)

    Google Scholar 

  6. Huang, Z., Chen, Y.: An improved artificial fish swarm algorithm based on hybrid behavior selection. Int. J. Control Autom. 6(5), 103–116 (2013)

    Article  Google Scholar 

  7. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  8. Izumi, K., Habib, M.K., Watanabe, K., Sato, R.: Behavior selection based navigation and obstacle avoidance approach using visual and ultrasonic sensory information for quadruped robots. Int. J. Adv. Robot. Syst. 5(4), 41 (2008)

    Article  Google Scholar 

  9. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Autonomous Robot Vehicles, pp. 396–404. Springer (1986). https://doi.org/10.1007/978-1-4613-8997-2_29

  10. Kim, G., Chung, W.: Navigation behavior selection using generalized stochastic petri nets for a service robot. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 37(4), 494–503 (2007)

    Google Scholar 

  11. LaValle, S.M.: Rapidly-exploring random trees: A new tool for path planning

    Google Scholar 

  12. Liu, D., Cong, M., Du, Y., Gao, S.: Robot behavior selection using salient landmarks and object-based attention. In: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1101–1106. IEEE (2013)

    Google Scholar 

  13. Murphy, T.G., Lyons, D.M., Hendriks, A.J.: Stable grasping with a multi-fingered robot hand: a behavior-based approach. In: Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 1993), vol. 2, pp. 867–874. IEEE (1993)

    Google Scholar 

  14. Wang, X., Ray, A., Lee, P., Fu, J.: Optimal control of robot behavior using language measure. In: Quantitative Measure for Discrete Event Supervisory Control, pp. 157–181. Springer (2005). https://doi.org/10.1007/0-387-23903-0_6

  15. Wang, Y., Li, S., Chen, Q., Hu, W.: Biology inspired robot behavior selection mechanism: using genetic algorithm. In: Li, K., Fei, M., Irwin, G.W., Ma, S. (eds.) LSMS 2007. LNCS, vol. 4688, pp. 777–786. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74769-7_82

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was funded by the federal state of North Rhine-Westphalia and the European Regional Development Fund FKZ: ERFE-040021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basile Tousside .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tousside, B., Mohr, J., Schmidt, M., Frochte, J. (2020). A Learning Approach for Optimizing Robot Behavior Selection Algorithm. In: Chan, C.S., et al. Intelligent Robotics and Applications. ICIRA 2020. Lecture Notes in Computer Science(), vol 12595. Springer, Cham. https://doi.org/10.1007/978-3-030-66645-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66645-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66644-6

  • Online ISBN: 978-3-030-66645-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics