Skip to main content

Tuning Algorithms for Stochastic Black-Box Optimization: State of the Art and Future Perspectives

  • Chapter
  • First Online:
Black Box Optimization, Machine Learning, and No-Free Lunch Theorems

Abstract

The focus of this paper lies on automatic and interactive tuning methods for stochastic optimization algorithms, e.g., evolutionary algorithms. Algorithm tuning is important because it helps to avoid wrong parameter settings, to improve the existing algorithms, to select the best algorithm for working with a real-world problem, to show the value of a novel algorithm, to evaluate the performance of an optimization algorithm when different option settings are used, and to obtain an algorithm instance that is robust to changes in problem specification. This chapter discusses strategical issues and defines eight key topics for tuning, namely, optimization algorithms, test problems, experimental setup, performance metrics, reporting, parallelization, tuning methods, and software. Features of established tuning software packages such as IRACE, SPOT, SMAC, and ParamILS are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adam, S.P., Alexandropoulos, S.-A.N., Pardalos, P.M., Vrahatis, M.N.: No Free Lunch Theorem: A Review, pp. 57–82. Springer International Publishing, Cham (2019). ISBN 978-3-030-12767-1, https://doi.org/10.1007/978-3-030-12767-1_5

  2. Addis, B., Locatelli, M.: A new class of test functions for global optimization. J. Glob. Optim. 38(3), 479–501 (2007) ISSN 0925-5001; 1573-2916/e

    Google Scholar 

  3. Andrei, N.: An unconstrained optimization test functions collection. Adv. Model. Optim. 10(1), 147–161 (2008) ISSN 1841-4311/e

    Google Scholar 

  4. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: Proceedings of Principles and Practice of Constraint Programming-CP 2009: 15th International Conference, CP 2009 Lisbon, 20–24 Sept 2009, p. 142. Springer, Berlin (2009)

    Google Scholar 

  5. Ansótegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., Tierney, K.: Model-based genetic algorithms for algorithm configuration. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)

    Google Scholar 

  6. Audet, C., Orban, D.: Finding optimal algorithmic parameters using derivative-free optimization. SIAM J. Optim. 17(3), 642–664 (2006). ISSN 1052-6234; 1095-7189/e

    Google Scholar 

  7. Audet, C., Dang, K.-C., Orban, D.: Optimization of algorithms with OPAL. Math. Program. Comput. 6(3), 233–254 (2014). ISSN 1867-2949; 1867-2957/e

    Google Scholar 

  8. Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York (1996)

    Book  MATH  Google Scholar 

  9. Barr, R., Hickman, B.: Reporting computational experiments with parallel algorithms: issues, measures, and experts’ opinions. ORSA J. Comput. 5(1), 2–18 (1993)

    Article  MATH  Google Scholar 

  10. Barr, R., Golden, B., Kelly, J., Rescende, M., Stewart, W.: Designing and reporting on computational experiments with heuristic methods. J. Heuristics 1(1), 9–32 (1995)

    Article  MATH  Google Scholar 

  11. Barton, R.R.: Testing strategies for simulation optimization. In: Proceedings of the 19th Conference on Winter Simulation, WSC ’87, pp. 391–401. ACM, New York (1987). ISBN 0-911801-32-4, http://doi.acm.org/10.1145/318371.318618

  12. Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation—The New Experimentalism. Natural Computing Series. Springer, Berlin (2006). ISBN 3-540-32026-1, http://dx.doi.org/10.1007/3-540-32027-X

  13. Bartz-Beielstein, T.: How to create generalizable results. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 1127–1142. Springer, Berlin (2015). ISBN 978-3-662-43504-5, http://dx.doi.org/10.1007/978-3-662-43505-2_56

    Chapter  Google Scholar 

  14. Bartz-Beielstein, T., Preuss, M.: The future of experimental research. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp. 17–46. Springer, Berlin (2010)

    Chapter  MATH  Google Scholar 

  15. Bartz-Beielstein, T., Parsopoulos, K.E., Vrahatis, M.N.: Design and analysis of optimization algorithms using computational statistics. Appl. Numer. Anal. Comput. Math. 1(2), 413–433 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bartz-Beielstein, T., Lasarczyk, C., Preuss, M.: Sequential parameter optimization. In: McKay, B., et al. (eds.) Proceedings 2005 Congress on Evolutionary Computation (CEC’05), Edinburgh, pp. 773–780. IEEE Press, Piscataway (2005). ISBN 0-7803-9363-5, https://doi.org/10.1109/CEC.2005.1554761

    Chapter  Google Scholar 

  17. Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.): Experimental Methods for the Analysis of Optimization Algorithms. Springer, Berlin (2010). ISBN 978-3-642-02537-2, https://doi.org/10.1007/978-3-642-02538-9, http://www.springer.com/978-3-642-02537-2

  18. Bartz-Beielstein, T., Branke, J., Mehnen, J., Mersmann, O.: Evolutionary algorithms. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 4(3), 178–195 (2014). ISSN 1942-4795. https://doi.org/10.1002/widm.1124

    Article  Google Scholar 

  19. Beiranvand, V., Hare, W., Lucet, Y.: Best practices for comparing optimization algorithms. Optim. Eng. 18(4), 815–848 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation, GECCO’02, pp. 11–18. Morgan Kaufmann, San Francisco (2002). ISBN 1-55860-878-8, http://dl.acm.org/citation.cfm?id=2955491.2955494

  21. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: Iterated F-race an overview. Technical report (2009)

    Google Scholar 

  22. Bischl, B., Wessing, S., Bauer, N., Friedrichs, K., Weihs, C.: MOI-MBO: multiobjective infill for parallel model-based optimization. In: International Conference on Learning and Intelligent Optimization, pp. 173–186. Springer, Berlin (2014)

    Google Scholar 

  23. Bongartz, I., Conn, A.R., Gould, N., Toint, P.L.: CUTE: constrained and unconstrained testing environment. ACM Trans. Math. Softw. 21(1), 123–160 (1995). ISSN 0098-3500; 1557-7295/e

    Google Scholar 

  24. Box, M.J.: A comparison of several current optimization methods, and the use of transformations in constrained problems. Comput. J. 9, 67–77 (1966). ISSN 0010-4620; 1460-2067/e

    Google Scholar 

  25. Box, G.E.P., Wilson, K.B.: On the experimental attainment of optimum conditions. J. R. Stat. Soc. Series B Methodol. 13(1), 1–45 (1951). http://www.jstor.org/stable/2983966

    MathSciNet  MATH  Google Scholar 

  26. Breiman, L.: Stacked regression. Mach. Learn. 24, 49–64 (1996)

    Article  MATH  Google Scholar 

  27. Buckley, A.G.: Algorithm 709: testing algorithm implementations. ACM Trans. Math. Softw. 18(4), 375–391 (1992). ISSN 0098-3500, http://doi.acm.org/10.1145/138351.138378

    Article  MATH  Google Scholar 

  28. Bussieck, M.R., Dirkse, S.P., Vigerske, S.: PAVER 2.0: an open source environment for automated performance analysis of benchmarking data. J. Glob. Optim. 59(2–3), 259–275 (2014). ISSN 0925-5001; 1573-2916/e

    Google Scholar 

  29. Campelo, F., Takahashi, F.: Sample size estimation for power and accuracy in the experimental comparison of algorithms. J. Heuristics 25(2), 305–338 (2019). ISSN 1572-9397, https://doi.org/10.1007/s10732-018-9396-7

    Article  Google Scholar 

  30. Chen, C.H.: An effective approach to smartly allocate computing budget for discrete event simulation. In: Proceedings of the 34th IEEE Conference on Decision and Control, pp. 2598–2605 (1995)

    Google Scholar 

  31. Chiarandini, M., Goegebeur, Y.: Mixed models for the analysis of optimization algorithms. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp. 225–264. Springer, Berlin (2010). ISBN 978-3-642-02537-2, https://doi.org/10.1007/978-3-642-02538-9, http://bib.mathematics.dk/preprint.php?id=DMF-2009-07-001

  32. Cohen, P.R.: Empirical Methods for Artificial Intelligence. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  33. Coy, S.P., Golden, B.L., Runger, G.C., Wasil, E.A.: Using experimental design to find effective parameter settings for heuristics. J. Heuristics 7(1), 77–97 (2000)

    Article  MATH  Google Scholar 

  34. Crainic, T.: Parallel Metaheuristics and Cooperative Search, pp. 419–451. Springer International Publishing, Cham (2019). ISBN 978-3-319-91086-4, https://doi.org/10.1007/978-3-319-91086-4_13

  35. Crowder, H.P., Dembo, R.S., Mulvey, J.M.: On reporting computational experiments with mathematical software. ACM Trans. Math. Softw. 5(2), 193–203 (1979)

    Article  Google Scholar 

  36. Daniels, S.J., Rahat, A.A., Everson, R.M., Tabor, G.R., Fieldsend, J.E.: A suite of computationally expensive shape optimisation problems using computational fluid dynamics. In: International Conference on Parallel Problem Solving from Nature, pp. 296–307. Springer, Berlin (2018)

    Google Scholar 

  37. De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. PhD thesis, University of Michigan (1975)

    Google Scholar 

  38. De Jong, K.: Parameter Setting in EAs: A 30 Year Perspective, pp. 1–18. Springer, Berlin (2007). ISBN 978-3-540-69432-8, https://doi.org/10.1007/978-3-540-69432-8_1

  39. Doerr, C., Wagner, M.: Sensitivity of parameter control mechanisms with respect to their initialization. In: International Conference on Parallel Problem Solving from Nature (PPSN 2018), Coimbra. Lecture Notes in Computer Science, vol. 11102, pp. 360–372, Sept 2018. https://doi.org/10.1007/978-3-319-99259-4_29, https://hal.sorbonne-universite.fr/hal-01921055

  40. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002). http://link.springer.com/10.1007/s101070100263

    Article  MathSciNet  MATH  Google Scholar 

  41. Domes, F., Fuchs, M., Schichl, H., Neumaier, A.: The optimization test environment. Optim. Eng. 15(2), 443–468 (2014). ISSN 1389-4420; 1573-2924/e

    Google Scholar 

  42. Eason, E.D.: Evidence of fundamental difficulties in nonlinear optimization code comparisons. In: Mulvey, J.M. (ed.) Evaluating Mathematical Programming Techniques, pp. 60–71. Springer, Berlin (1982). ISBN 978-3-642-95406-1

    Chapter  Google Scholar 

  43. Eason, E., Fenton, R.: A comparison of numerical optimization methods for engineering design. J. Eng. Ind. 96(1), 196–200 (1974)

    Article  Google Scholar 

  44. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Berlin (2003). ISBN 3-540-40184-9, http://www.worldcat.org/title/introduction-to-evolutionary-computing/oclc/52559217

    Book  MATH  Google Scholar 

  45. Eiben, A.E., Smit, S.K.: Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol. Comput. 1(1), 19–31 (2011). https://doi.org/10.1016/j.swevo.2011.02.001, http://www.sciencedirect.com/science/article/pii/S2210650211000022

  46. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999). citeseer.nj.nec.com/eiben00parameter.html

  47. Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gümüş, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization, vol. 33. Kluwer Academic, Dordrecht (1999). ISBN 0-7923-5801-5/hbk

    Google Scholar 

  48. Forrester, A., Sóbester, A., Keane, A.: Multi-fidelity optimization via surrogate modelling. Proc. R. Soc. A Math. Phys. Eng. Sci. 463(2088), 3251–3269 (2007). https://doi.org/10.1098/rspa.2007.1900

    MathSciNet  MATH  Google Scholar 

  49. Ginsbourger, D., Le Riche, R., Carraro, L.: Kriging is well-suited to parallelize optimization. In: Computational Intelligence in Expensive Optimization Problems, pp. 131–162. Springer, Berlin (2010)

    Google Scholar 

  50. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms. Foundations of Genetic Algorithms, vol. 1, pp. 69–93. Elsevier, Amsterdam (1991). https://doi.org/10.1016/B978-0-08-050684-5.50008-2, http://www.sciencedirect.com/science/article/pii/B9780080506845500082

  51. Goldberg, D.E., Deb, K., Clark, J.H.: Genetic algorithms, noise, and the sizing of populations. Complex Syst. 6, 333 (1992)

    MATH  Google Scholar 

  52. Gould, N., Scott, J.: A note on performance profiles for benchmarking software. ACM Trans. Math. Softw. 43(2), 5 (2016). ISSN 0098-3500; 1557-7295/e, Id/No 15

    Google Scholar 

  53. Grefenstette, J.: Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. Man Cybern. 16(1), 122–128 (1986). ISSN 0018-9472, https://doi.org/10.1109/TSMC.1986.289288

    Article  Google Scholar 

  54. Haftka, R.T.: Requirements for papers focusing on new or improved global optimization algorithms. Struct. Multidiscipl. Optim. 54(1), 1–1 (2016). ISSN 1615-1488, https://doi.org/10.1007/s00158-016-1491-5

    Article  MathSciNet  Google Scholar 

  55. Haftka, R.T., Villanueva, D., Chaudhuri, A.: Parallel surrogate-assisted global optimization with expensive functions—a survey. Struct. Multidiscipl. Optim. 54(1), 3–13 (2016). ISSN 1615-1488, https://doi.org/10.1007/s00158-016-1432-3

    Article  MathSciNet  Google Scholar 

  56. Hare, W., Wang, Y.: Fairer benchmarking of optimization algorithms via derivative free optimization. Technical report, Optimization-online (2010)

    Google Scholar 

  57. Harik, G.R., Lobo, F.G.: A parameter-less genetic algorithm. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation - Volume 1, GECCO’99, pp. 258–265. Morgan Kaufmann, San Francisco (1999). ISBN 1-55860-611-4, http://dl.acm.org/citation.cfm?id=2933923.2933949

  58. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  59. Hillstrom, K.E.: A simulation test approach to the evaluation of nonlinear optimization algorithms. ACM Trans. Math. Softw. 3(4), 305–315 (1977). http://doi.acm.org/10.1145/355759.355760

    Article  Google Scholar 

  60. Himmelblau, D.M.: Applied Nonlinear Programming. McGraw-Hill, New York (1972)

    MATH  Google Scholar 

  61. Hoos, H.H., Stützle, T.: Stochastic Local Search—Foundations and Applications. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  62. Huang, D., Allen, T.T., Notz, W.I., Zeng, N.: Global optimization of stochastic black-box systems via sequential Kriging meta-models. J. Glob. Optim. 34(3), 441–466 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  63. Hutter, F., Babic, D., Hoos, H.H., Hu, A.J.: Boosting verification by automatic tuning of decision procedures. In: Proceedings of the Formal Methods in Computer Aided Design, FMCAD ’07, pp. 27–34. IEEE Computer Society, Washington (2007). ISBN 0-7695-3023-0, https://doi.org/10.1109/FMCAD.2007.13

  64. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. Technical report (2009)

    Google Scholar 

  65. Hutter, F., Hoos, H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Learning and Intelligent Optimization, pp. 507–523 (2011). https://maanvs03.gm.fh-koeln.de/webstore/Classified.d/Hutt11a.d/Hutt11a.pdf

  66. IBM Corporation: CPLEX’s automatic tuning tool. Technical report, IBM (2014)

    Google Scholar 

  67. Jackson, R.H.F., Boggs, P.T., Nash, S.G., Powell, S.: Guidelines for reporting results of computational experiments. Report of the ad hoc committee. Math. Program. 49(1), 413–425 (1990). ISSN 1436-4646, https://doi.org/10.1007/BF01588801

    Article  Google Scholar 

  68. Jin, Y., Wang, H., Chugh, T., Guo, D., Miettinen, K.: Data-driven evolutionary optimization: an overview and case studies. IEEE Trans. Evol. Comput. 23(3), 442–458 (2019). ISSN 1089-778X, https://doi.org/10.1109/TEVC.2018.2869001

    Article  Google Scholar 

  69. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing: an experimental evaluation. Part I, graph partitioning. Oper. Res. 37(6), 865–892 (1989)

    Google Scholar 

  70. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing: an experimental evaluation. Part II, graph coloring and number partitioning. Oper. Res. 39(3), 378–406 (1991)

    Google Scholar 

  71. Johnson, D.S., McGeoch, L., Rothberg, E.: Asymptotic experimental analysis for the Held-Karp traveling salesman bound. In: Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, vol. 81, pp. 341–350 (1996)

    MathSciNet  MATH  Google Scholar 

  72. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  73. Jung, C., Zaefferer, M., Bartz-Beielstein, T., Rudolph, G.: Metamodel-based optimization of hot rolling processes in the metal industry. Int. J. Adv. Manuf. Technol. 1–15 (2016). ISSN 1433-3015, https://doi.org/10.1007/s00170-016-9386-6

  74. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings IEEE International Conference on Neural Networks, pp. 1942–1948. IEEE, Piscataway (1995)

    Google Scholar 

  75. Kleijnen, J.P.C.: Statistical Tools for Simulation Practitioners. Marcel Dekker, New York (1987)

    MATH  Google Scholar 

  76. Kleijnen, J.P.C.: Design and Analysis of Simulation Experiments. Springer, New York (2008)

    MATH  Google Scholar 

  77. Kleijnen, J.P.C.: Design and Analysis of Simulation Experiments. International Series in Operations Research and Management Science. Springer International Publishing, New York (2015). ISBN 978-3-319-18087-8, https://books.google.de/books?id=Fq4YCgAAQBAJ

    Book  MATH  Google Scholar 

  78. Kramer, O.: Evolutionary self-adaptation: a survey of operators and strategy parameters. Evol. Intell. 3(2), 51–65 (2010). https://maanvs03.gm.fh-koeln.de/webstore/Classified.d/Kram10a.d/Kram10a.pdf

    Article  MATH  Google Scholar 

  79. Lenard, M.L., Minkoff, M.: Randomly generated test problems for positive definite quadratic programming. ACM Trans. Math. Softw. 10(1), 86–96 (1984). ISSN 0098-3500, http://doi.acm.org/10.1145/356068.356075

    Article  MathSciNet  MATH  Google Scholar 

  80. Liu, D., Zhang, X.: Test problem generator by neural network for algorithms that try solving nonlinear programming problems globally. J. Glob. Optim. 16(3), 229–243 (2000). ISSN 0925-5001; 1573-2916/e

    Google Scholar 

  81. Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.): Parameter Setting in Evolutionary Algorithms. Studies in Computational Intelligence, vol. 54. Springer, Berlin (2007). ISBN 978-3-540-69431-1

    Google Scholar 

  82. Lopez-Ibanez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package, iterated race for automatic algorithm configuration. Technical Report 2011-004, IRIDIA (2011)

    Google Scholar 

  83. McGeoch, C.C.: Experimental Analysis of Algorithms. PhD thesis, Carnegie Mellon University, Pittsburgh (1986)

    Google Scholar 

  84. McGeoch, C.C.: Toward an experimental method for algorithm simulation. INFORMS J. Comput. 8(1), 1–15 (1996)

    Article  MATH  Google Scholar 

  85. McGeoch, C.C.: Experimental algorithmics. Commun. ACM 50(11), 27–31 (2007). ISSN 0001-0782, http://doi.acm.org/10.1145/1297797.1297818

    Article  Google Scholar 

  86. McGeoch, C.C.: A Guide to Experimental Algorithmics, 1st edn. Cambridge University Press, New York (2012). ISBN 0521173019, 9780521173018

    Google Scholar 

  87. Miele, A., Tietze, J., Levy, A.: Comparison of several gradient algorithms for mathematical programming problems. Technical report, Rice University (1972)

    MATH  Google Scholar 

  88. Montgomery, D.C.: Design and Analysis of Experiments, 5th edn. Wiley, New York (2001)

    Google Scholar 

  89. Moré, J.J., Wild, S.M.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20(1), 172–191 (2009). ISSN 1052-6234; 1095-7189/e

    Google Scholar 

  90. More, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7(1), 17–41 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  91. Mühlenbein, H.: How genetic algorithms really work : I. Mutation and hill climbing. In: Proc. 2nd Int. Conf. on Parallel Problem Solving from Nature. Elsevier, Amsterdam (1992). https://ci.nii.ac.jp/naid/10022158367/en/

  92. Muñoz, M.A., Sun, Y., Kirley, M., Halgamuge, S.K.: Algorithm selection for black-box continuous optimization problems: a survey on methods and challenges. Inf. Sci. 317, 224–245 (2015). ISSN 0020-0255, https://doi.org/10.1016/j.ins.2015.05.010, http://www.sciencedirect.com/science/article/pii/S0020025515003680

  93. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  94. Nell, C., Fawcett, C., Hoos, H.H., Leyton-Brown, K.: Hal: a framework for the automated analysis and design of high-performance algorithms. In: Coello, C.A.C. (ed.) Learning and Intelligent Optimization, pp. 600–615. Springer, Berlin (2011). ISBN 978-3-642-25566-3

    Chapter  Google Scholar 

  95. Neumann-Brosig, M., Marco, A., Schwarzmann, D., Trimpe, S.: Data-efficient auto-tuning with Bayesian optimization: an industrial control study (2018). CoRR, abs/1812.06325, http://arxiv.org/abs/1812.06325

  96. Parejo, J.A., Ruiz-Cortés, A., Lozano, S., Fernandez, P.: Metaheuristic optimization frameworks: a survey and benchmarking. Soft Comput. 16(3), 527–561 (2012). ISSN 1433-7479, https://doi.org/10.1007/s00500-011-0754-8

    Article  Google Scholar 

  97. Pavón, R., Díaz, F., Laza, R., Luzón, V.: Automatic parameter tuning with a Bayesian case-based reasoning system. A case of study. Expert Syst. Appl. 36(2, Part 2), 3407–3420 (2009). ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2008.02.044, http://www.sciencedirect.com/science/article/pii/S0957417408001292

  98. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2018). https://www.R-project.org

  99. Rardin, R., Uzsoy, R.: Experimental evaluation of heuristic optimization algorithms: a tutorial. J. Heuristics 7(3), 261–304 (2001)

    Article  MATH  Google Scholar 

  100. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. PhD thesis, Department of Process Engineering, Technical University of Berlin (1971)

    Google Scholar 

  101. Ridge, E.: Design of experiments for the tuning of optimisation algorithms. PhD thesis, The University of York (2007)

    Google Scholar 

  102. Ridge, E., Kudenko, D.: Tuning an Algorithm Using Design of Experiments, pp. 265–286. Springer, Berlin (2010). ISBN 978-3-642-02538-9, https://doi.org/10.1007/978-3-642-02538-9_11

  103. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4(4), 409–435 (1989)

    MathSciNet  MATH  Google Scholar 

  104. Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M.: Sensitivity Analysis in Practice. Wiley, New York (2004). ISBN 978-0-470-87095-2, https://doi.org/10.1002/0470870958

    MATH  Google Scholar 

  105. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global Sensitivity Analysis. Wiley, New York (2008)

    MATH  Google Scholar 

  106. Santner, T.J., Williams, B.J., Notz, W.I.: The Design and Analysis of Computer Experiments. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  107. Schagen, A., Rehbach, F., Bartz-Beielstein, T.: Model-based evolutionary algorithm for optimization of gas distribution systems in power plant electrostatic precipitators. Int. J. Gener. Storage Electricity Heat 9, 65–72 (2018)

    Google Scholar 

  108. Schwefel, H.-P.: Evolutionsstrategie und numerische Optimierung. PhD thesis, Technische Universität Berlin, Fachbereich Verfahrenstechnik, Berlin (1975)

    Google Scholar 

  109. Schwefel, H.P.: Evolution and Optimum Seeking. Sixth-Generation Computer Technology. Wiley, New York (1995)

    Google Scholar 

  110. Sloss, A.N., Gustafson, S.: 2019 Evolutionary Algorithms Review (2019). http://arxiv.org/abs/1906.08870

  111. Smit, S.K., Eiben, A.E.: Multi-problem parameter tuning using BONESA. In: Hao, J.K., Legrand, P., Collet, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) Artificial Evolution, 10th International Conference Evolution Artificielle, pp. 222–233. Springer, Berlin (2011)

    Google Scholar 

  112. Sóbester, A., Leary, S.J., Keane, A.J.: A parallel updating scheme for approximating and optimizing high fidelity computer simulations. Struct. Multidiscipl. Optim. 27(5), 371–383 (2004)

    Article  Google Scholar 

  113. Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley, Reading (1977)

    MATH  Google Scholar 

  114. Vodopija, A., Stork, J., Bartz-Beielstein, T., Filipič, B.: Model-based multiobjective optimization of elevator group control. In: Filipič, B., Bartz-Beielstein, T. (eds.) International Conference on High-Performance Optimization in Industry, HPOI 2018, Ljubljana, pp. 43–46, Oct 2018

    Google Scholar 

  115. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  116. Yeguas, E., Luzón, M., Pavón, R., Laza, R., Arroyo, G., Díaz, F.: Automatic parameter tuning for evolutionary algorithms using a Bayesian case-based reasoning system. Appl. Soft Comput. 18, 185–195 (2014). ISSN 1568-4946, https://doi.org/10.1016/j.asoc.2014.01.032, http://www.sciencedirect.com/science/article/pii/S1568494614000519

  117. Zheng, F., Simpson, A.R., Zecchin, A.C.: An efficient hybrid approach for multiobjective optimization of water distribution systems. Water Resourc. Res. 50(5), 3650–3671 (2014). https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013WR014143

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by OWOS (FKZ: 005-1703-0011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bartz-Beielstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bartz-Beielstein, T., Rehbach, F., Rebolledo, M. (2021). Tuning Algorithms for Stochastic Black-Box Optimization: State of the Art and Future Perspectives. In: Pardalos, P.M., Rasskazova, V., Vrahatis, M.N. (eds) Black Box Optimization, Machine Learning, and No-Free Lunch Theorems. Springer Optimization and Its Applications, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-030-66515-9_3

Download citation

Publish with us

Policies and ethics