Skip to main content

Learning to Segment Microscopy Images with Lazy Labels

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Abstract

The need for labour intensive pixel-wise annotation is a major limitation of many fully supervised learning methods for segmenting bioimages that can contain numerous object instances with thin separations. In this paper, we introduce a deep convolutional neural network for microscopy image segmentation. Annotation issues are circumvented by letting the network being trainable on coarse labels combined with only a very small number of images with pixel-wise annotations. We call this new labelling strategy ‘lazy’ labels. Image segmentation is stratified into three connected tasks: rough inner region detection, object separation and pixel-wise segmentation. These tasks are learned in an end-to-end multi-task learning framework. The method is demonstrated on two microscopy datasets, where we show that the model gives accurate segmentation results even if exact boundary labels are missing for a majority of annotated data. It brings more flexibility and efficiency for training deep neural networks that are data hungry and is applicable to biomedical images with poor contrast at the object boundaries or with diverse textures and repeated patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE transactions on pattern analysis and machine intelligence 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  2. Bajcsy, P., Feldman, S., Majurski, M., Snyder, K., Brady, M.: Approaches totraining multiclass semantic image segmentation of damage in concrete.Journal of Microscopy (2020)

    Google Scholar 

  3. Bearman, A., Russakovsky, O., Ferrari, V., Fei-Fei, L.: What’s the point: Semantic segmentation with point supervision. In: European conference on computer vision. pp. 549–565. Springer (2016)

    Google Scholar 

  4. Bischke, B., Helber, P., Folz, J., Borth, D., Dengel, A.: Multi-task learning for segmentation of building footprints with deep neural networks. In: 2019 IEEE International Conference on Image Processing (ICIP). pp. 1480–1484. IEEE (2019)

    Google Scholar 

  5. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient nd image segmentation. International journal of computer vision 70(2), 109–131 (2006)

    Article  Google Scholar 

  6. Buchholz, T.O., Prakash, M., Krull, A., Jug, F.: Denoiseg: Joint denoising and segmentation. arXiv preprint arXiv:2005.02987 (2020)

  7. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International journal of computer vision 22(1), 61–79 (1997)

    Article  Google Scholar 

  8. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv preprint arXiv:1412.7062 (2014)

  9. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence 40(4), 834–848 (2018)

    Article  Google Scholar 

  10. Ciofolo, C., Barillot, C.: Atlas-based segmentation of 3d cerebral structures with competitive level sets and fuzzy control. Medical image analysis 13(3), 456–470 (2009)

    Article  Google Scholar 

  11. Ezhov, M., Zakirov, A., Gusarev, M.: Coarse-to-fine volumetric segmentation of teeth in cone-beam ct. arXiv preprint arXiv:1810.10293 (2018)

  12. Ghosh, A., Ehrlich, M., Shah, S., Davis, L., Chellappa, R.: Stacked u-nets for ground material segmentation in remote sensing imagery. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 257–261 (2018)

    Google Scholar 

  13. Guerrero-Pena, F.A., Fernandez, P.D.M., Ren, T.I., Yui, M., Rothenberg, E., Cunha, A.: Multiclass weighted loss for instance segmentation of cluttered cells. In: 2018 25th IEEE International Conference on Image Processing (ICIP). pp. 2451–2455. IEEE (2018)

    Google Scholar 

  14. Heimann, T., Meinzer, H.P.: Statistical shape models for 3d medical image segmentation: a review. Medical image analysis 13(4), 543–563 (2009)

    Article  Google Scholar 

  15. Hirsch, P., Kainmueller, D.: An auxiliary task for learning nuclei segmentation in 3d microscopy images. arXiv preprint arXiv:2002.02857 (2020)

  16. Hong, S., Noh, H., Han, B.: Decoupled deep neural network for semi-supervised semantic segmentation. In: Advances in neural information processing systems. pp. 1495–1503 (2015)

    Google Scholar 

  17. Huang, Z., Wang, X., Wang, J., Liu, W., Wang, J.: Weakly-supervised semantic segmentation network with deep seeded region growing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7014–7023 (2018)

    Google Scholar 

  18. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  19. Jing, L., Chen, Y., Tian, Y.: Coarse-to-fine semantic segmentation from image-level labels. arXiv preprint arXiv:1812.10885 (2018)

  20. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7482–7491 (2018)

    Google Scholar 

  21. Khoreva, A., Benenson, R., Hosang, J., Hein, M., Schiele, B.: Simple does it: Weakly supervised instance and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 876–885 (2017)

    Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  23. Kolesnikov, A., Lampert, C.H.: Seed, expand and constrain: Three principles for weakly-supervised image segmentation. In: European Conference on Computer Vision. pp. 695–711. Springer (2016)

    Google Scholar 

  24. Krasowski, N., Beier, T., Knott, G., Köthe, U., Hamprecht, F.A., Kreshuk, A.: Neuron segmentation with high-level biological priors. IEEE transactions on medical imaging 37(4), 829–839 (2017)

    Article  Google Scholar 

  25. Lee, J., Kim, E., Lee, S., Lee, J., Yoon, S.: Ficklenet: Weakly and semi-supervised semantic image segmentation using stochastic inference. arXiv preprint arXiv:1902.10421 (2019)

  26. Lin, D., Dai, J., Jia, J., He, K., Sun, J.: Scribblesup: Scribble-supervised convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3159–3167 (2016)

    Google Scholar 

  27. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., Van Der Laak, J.A., Van Ginneken, B., Sánchez, C.I.: A survey on deep learning in medical image analysis. Medical image analysis 42, 60–88 (2017)

    Article  Google Scholar 

  28. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 3431–3440 (2015)

    Google Scholar 

  29. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. vol. 1, pp. 281–297. Oakland, CA, USA (1967)

    Google Scholar 

  30. Mlynarski, P., Delingette, H., Criminisi, A., Ayache, N.: Deep learning with mixed supervision for brain tumor segmentation. arXiv preprint arXiv:1812.04571 (2018)

  31. Papandreou, G., Chen, L.C., Murphy, K.P., Yuille, A.L.: Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation. In: Proceedings of the IEEE international conference on computer vision. pp. 1742–1750 (2015)

    Google Scholar 

  32. Playout, C., Duval, R., Cheriet, F.: A novel weakly supervised multitaskarchitecture for retinal lesions segmentation on fundus images. IEEEtransactions on medical imaging (2019)

    Google Scholar 

  33. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. pp. 234–241. Springer (2015)

    Google Scholar 

  34. Rother, C., Kolmogorov, V., Blake, A.: Grabcut: Interactive foreground extraction using iterated graph cuts. In: ACM transactions on graphics (TOG). vol. 23, pp. 309–314. ACM (2004)

    Google Scholar 

  35. Shah, M.P., Merchant, S., Awate, S.P.: Ms-net: Mixed-supervision fully-convolutional networks for full-resolution segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 379–387. Springer (2018)

    Google Scholar 

  36. Shin, S.Y., Lee, S., Yun, I.D., Kim, S.M., Lee, K.M.: Joint weakly and semi-supervised deep learning for localization and classification of masses in breast ultrasound images. IEEE transactions on medical imaging 38(3), 762–774 (2019)

    Article  Google Scholar 

  37. Sirinukunwattana, K., Pluim, J.P., Chen, H., Qi, X., Heng, P.A., Guo, Y.B., Wang, L.Y., Matuszewski, B.J., Bruni, E., Sanchez, U., et al.: Gland segmentation in colon histology images: The glas challenge contest. Medical image analysis 35, 489–502 (2017)

    Article  Google Scholar 

  38. Sun, F., Li, W.: Saliency guided deep network for weakly-supervised image segmentation. Pattern Recognition Letters 120, 62–68 (2019)

    Article  Google Scholar 

  39. Sun, T., Chen, Z., Yang, W., Wang, Y.: Stacked u-nets with multi-output for road extraction. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). pp. 187–1874. IEEE (2018)

    Google Scholar 

  40. Tsutsui, S., Kerola, T., Saito, S., Crandall, D.J.: Minimizing supervision for free-space segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 988–997 (2018)

    Google Scholar 

  41. Wang, C., MacGillivray, T., Macnaught, G., Yang, G., Newby, D.: A two-stage 3d unet framework for multi-class segmentation on full resolution image. arXiv preprint arXiv:1804.04341 (2018)

  42. Wang, X., Xiao, T., Jiang, Y., Shao, S., Sun, J., Shen, C.: Repulsion loss: Detecting pedestrians in a crowd. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7774–7783 (2018)

    Google Scholar 

  43. Wei, Y., Liang, X., Chen, Y., Shen, X., Cheng, M.M., Feng, J., Zhao, Y., Yan, S.: Stc: A simple to complex framework for weakly-supervised semantic segmentation. IEEE transactions on pattern analysis and machine intelligence 39(11), 2314–2320 (2017)

    Article  Google Scholar 

  44. Wei, Y., Xiao, H., Shi, H., Jie, Z., Feng, J., Huang, T.S.: Revisiting dilated convolution: A simple approach for weakly-and semi-supervised semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7268–7277 (2018)

    Google Scholar 

  45. Zhang, J., Jin, Y., Xu, J., Xu, X., Zhang, Y.: Mdu-net: Multi-scale densely connected u-net for biomedical image segmentation. arXiv preprint arXiv:1812.00352 (2018)

  46. Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C., Torr, P.H.: Conditional random fields as recurrent neural networks. In: Proceedings of the IEEE international conference on computer vision. pp. 1529–1537 (2015)

    Google Scholar 

  47. Zhou, J., Luo, L.Y., Dou, Q., Chen, H., Chen, C., Li, G.J., Jiang, Z.F., Heng,P.A.: Weakly supervised 3d deep learning for breast cancer classification andlocalization of the lesions in mr images. Journal of Magnetic ResonanceImaging (2019)

    Google Scholar 

  48. Zhou, S., Nie, D., Adeli, E., Yin, J., Lian, J., Shen, D.: High-resolution encoder-decoder networks for low-contrast medical image segmentation. IEEE Transactions on Image Processing 29, 461–475 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

RK and CBS acknowledge support from the EPSRC grant EP/T003553/1. CBS additionally acknowledges support from the Leverhulme Trust project on ‘Breaking the non-convexity barrier’, the Philip Leverhulme Prize, the EPSRC grant EP/S026045/1, the EPSRC Centre Nr. EP/N014588/1, the RISE projects CHiPS and NoMADS, the Cantab Capital Institute for the Mathematics of Information and the Alan Turing Institute, Royal Society Wolfson fellowship. AB and NP acknowledge support from the EU Horizon 2020 research and innovation programme NoMADS (Marie Skłodowska-Curie grant agreement No. 777826).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rihuan Ke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ke, R., Bugeau, A., Papadakis, N., Schuetz, P., Schönlieb, CB. (2020). Learning to Segment Microscopy Images with Lazy Labels. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12535. Springer, Cham. https://doi.org/10.1007/978-3-030-66415-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66415-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66414-5

  • Online ISBN: 978-3-030-66415-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics