Skip to main content

Improving Blind Spot Denoising for Microscopy

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Abstract

Many microscopy applications are limited by the total amount of usable light and are consequently challenged by the resulting levels of noise in the acquired images. This problem is often addressed via (supervised) deep learning based denoising. Recently, by making assumptions about the noise statistics, self-supervised methods have emerged. Such methods are trained directly on the images that are to be denoised and do not require additional paired training data. While achieving remarkable results, self-supervised methods can produce high-frequency artifacts and achieve inferior results compared to supervised approaches. Here we present a novel way to improve the quality of self-supervised denoising. Considering that light microscopy images are usually diffraction-limited, we propose to include this knowledge in the denoising process. We assume the clean image to be the result of a convolution with a point spread function (PSF) and explicitly include this operation at the end of our neural network. As a consequence, we are able to eliminate high-frequency artifacts and achieve self-supervised results that are very close to the ones achieved with traditional supervised methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Code Availability.

Our code is available at https://github.com/juglab/DecoNoising.

References

  1. Batson, J., Royer, L.: Noise2Self: blind denoising by self-supervision (2019)

    Google Scholar 

  2. Belthangady, C., Royer, L.A.: Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction. Nat. Methods 16, 1–11 (2019)

    Article  Google Scholar 

  3. Buchholz, T.O., Prakash, M., Krull, A., Jug, F.: DenoiSeg: joint denoising and segmentation. arXiv preprint arXiv:2005.02987 (2020)

  4. Foi, A., Trimeche, M., Katkovnik, V., Egiazarian, K.: Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data. IEEE Trans. Image Process. 17(10), 1737–1754 (2008)

    Article  MathSciNet  Google Scholar 

  5. Hendriksen, A.A., Pelt, D.M., Batenburg, K.J.: Noise2Inverse: self-supervised deep convolutional denoising for linear inverse problems in imaging (2020)

    Google Scholar 

  6. Khademi, W., Rao, S., Minnerath, C., Hagen, G., Ventura, J.: Self-supervised Poisson-Gaussian denoising. arXiv preprint arXiv:2002.09558 (2020)

  7. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: Bengio, Y., LeCun, Y. (eds.) 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014, Conference Track Proceedings (2014). http://arxiv.org/abs/1312.6114

  8. Kobayashi, H., Solak, A.C., Batson, J., Royer, L.A.: Image deconvolution via noise-tolerant self-supervised inversion. arXiv preprint arXiv:2006.06156 (2020)

  9. Krull, A., Buchholz, T.O., Jug, F.: Noise2Void-learning denoising from single noisy images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2129–2137 (2019)

    Google Scholar 

  10. Krull, A., Vicar, T., Prakash, M., Lalit, M., Jug, F.: Probabilistic Noise2Void: unsupervised content-aware denoising. Front. Comput. Sci. 2, 60 (2020)

    Article  Google Scholar 

  11. Laine, S., Karras, T., Lehtinen, J., Aila, T.: High-quality self-supervised deep image denoising. In: Advances in Neural Information Processing Systems, pp. 6968–6978 (2019)

    Google Scholar 

  12. Lehtinen, J., et al.: Noise2noise: learning image restoration without clean data. In: International Conference on Machine Learning, pp. 2965–2974 (2018)

    Google Scholar 

  13. Luisier, F., Blu, T., Unser, M.: Image denoising in mixed Poisson-Gaussian noise. IEEE Trans. Image Process. 20(3), 696–708 (2010)

    Article  MathSciNet  Google Scholar 

  14. Marsh, R.: The Beetle. Broadview Press (2004)

    Google Scholar 

  15. Metzler, C.A., Mousavi, A., Heckel, R., Baraniuk, R.G.: Unsupervised learning with stein’s unbiased risk estimator. arXiv preprint arXiv:1805.10531 (2018)

  16. Prakash, M., Krull, A., Jug, F.: Divnoising: diversity denoising with fully convolutional variational autoencoders. arXiv preprint arXiv:2006.06072 (2020)

  17. Prakash, M., Lalit, M., Tomancak, P., Krull, A., Jug, F.: Fully unsupervised probabilistic Noise2Void. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 154–158. Iowa City, IA, USA (2020). https://doi.org/10.1109/ISBI45749.2020.9098612

  18. Ramani, S., Blu, T., Unser, M.: Monte-Carlo sure: a black-box optimization of regularization parameters for general denoising algorithms. IEEE Trans. Image Process. 17(9), 1540–1554 (2008)

    Article  MathSciNet  Google Scholar 

  19. Raphan, M., Simoncelli, E.P.: Learning to be Bayesian without supervision. In: Advances in Neural Information Processing Systems, pp. 1145–1152 (2007)

    Google Scholar 

  20. Richardson, W.H.: Bayesian-based iterative method of image restoration. JoSA 62(1), 55–59 (1972)

    Article  Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Stein, C.M.: Estimation of the mean of a multivariate normal distribution. Ann. Stat. 9(6), 1135–1151 (1981)

    Article  MathSciNet  Google Scholar 

  23. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: CVPR (2018)

    Google Scholar 

  24. Weigert, M., et al.: Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods 15(12), 1090–1097 (2018)

    Article  Google Scholar 

  25. Zhang, Y., et al.: A Poisson-Gaussian denoising dataset with real fluorescence microscopy images. In: CVPR (2019)

    Google Scholar 

  26. Zhou, R., Helou, M.E., Sage, D., Laroche, T., Seitz, A., Süsstrunk, S.: W2S: a joint denoising and super-resolution dataset. arXiv preprint arXiv:2003.05961 (2020)

Download references

Acknowledgments

We thank the Scientific Computing Facility at MPI-CBG for giving us access to their HPC cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Jug .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goncharova, A.S., Honigmann, A., Jug, F., Krull, A. (2020). Improving Blind Spot Denoising for Microscopy. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12535. Springer, Cham. https://doi.org/10.1007/978-3-030-66415-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66415-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66414-5

  • Online ISBN: 978-3-030-66415-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics