Skip to main content

Common Challenges for Sperm In Vitro: Causes and Consequences

  • Conference paper
  • First Online:
XIIIth International Symposium on Spermatology
  • 367 Accesses

Abstract

Before the human spermatozoon reaches the ovum in the ART Laboratory, it experi- ences various challenges. This paper will focus on two major unphysiological chal- lenges that may affect its full fertilizing potential. These are (1) sperm exposure to seminal vesicular fluid and (2) sperm exposure to an osmotic roller-coaster. Exposure to seminal vesicular fluid results in chromatin zinc deficiency and a vulnerable chromatin. Exposure to the osmotic roller coaster results in sperm ATP depletion, tail coiling, impaired sperm motility and low sperm density affecting sperm functional properties and sperm selection procedures by swim up and density gradient centrifugation. These two unphysiological challenges are unintendedly forced onto the spermatozoa when collected as a whole ejaculate and then subjected to diagnostics and sperm selection for ART.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amelar RD, Hotchkiss RS (1965) The split ejaculate: its use in the management of male infertility. Fertil Steril 16:46–60

    Article  CAS  PubMed  Google Scholar 

  • Andersson B (1977) Regulation of body fluids. Annu Rev Physiol 39:185–200

    Article  CAS  PubMed  Google Scholar 

  • Arver S (1982) Zinc and zinc ligands in human seminal plasma. III. The principal low molecular weight zinc ligand in prostatic secretion and seminal plasma. Acta Physiol Scand 116:67–73

    Article  CAS  PubMed  Google Scholar 

  • Arver S, Eliasson R (1982) Zinc and zinc ligands in human seminal plasma. II. Contribution by ligands of different origin to the zinc binding properties of human seminal plasma. Acta Physiol Scand 115:217–224

    Article  CAS  PubMed  Google Scholar 

  • Barratt CL, Aitken RJ, Björndahl L, Carrell DT, de Boer P, Kvist U, Lewis SE, Perreault SD, Perry MJ, Ramos L et al (2010) Sperm DNA: organization, protection and vulnerability: from basic science to clinical applications—a position report. Hum Reprod 25:824–838

    Article  PubMed  Google Scholar 

  • Bedford JM, Bent MJ, Calvin H (1973) Variations in the structural character and stability of the nuclear chromatin in morphologically normal human spermatozoa. J Reprod Fertil 33:19–29

    Article  CAS  PubMed  Google Scholar 

  • Björndahl L (1986) On sperm nuclear zinc and chromatin decondensation: an in vitro study on the physiology of the ejaculated human spermatozoon. Karolinska Institutet, Stockholm

    Google Scholar 

  • Björndahl L, Kvist U (1982) Importance of zinc for human sperm head-tail connection. Acta Physiol Scand 116:51–55

    Article  PubMed  Google Scholar 

  • Björndahl L, Kvist U (1985) Loss of an intrinsic capacity for human sperm chromatin decondensation. Acta Physiol Scand 124:189–194

    Article  PubMed  Google Scholar 

  • Björndahl L, Kvist U (1990) Influence of seminal vesicular fluid on the zinc content of human sperm chromatin. Int J Androl 13:232–237

    Article  PubMed  Google Scholar 

  • Björndahl L, Kvist U (2003) Sequence of ejaculation affects the spermatozoon as a carrier and its message. Reprod Biomed Online 7:440–448

    Article  PubMed  Google Scholar 

  • Björndahl L, Kvist U (2010) Human sperm chromatin stabilization: a proposed model including zinc bridges. Mol Hum Reprod 16:23–29

    Article  PubMed  CAS  Google Scholar 

  • Björndahl L, Kvist U (2011) A model for the importance of zinc in the dynamics of human sperm chromatin stabilization after ejaculation in relation to sperm DNA vulnerability. Syst Biol Reprod Med 57:86–92

    Article  PubMed  CAS  Google Scholar 

  • Björndahl L, Kjellberg S, Kvist U (1991) Ejaculatory sequence in men with low sperm chromatin-zinc. Int J Androl 14:174–178

    Article  PubMed  Google Scholar 

  • Björndahl L, Mortimer D, Barratt CLR, Castilla JA, Menkveld R, Kvist U, Alvarez JG, Haugen TB (2010) A practical guide to basic laboratory andrology. Cambridge University Press, Cambridge, UK; New York

    Book  Google Scholar 

  • Bungum M, Bungum L, Giwercman A (2011) Sperm chromatin structure assay (SCSA): a tool in diagnosis and treatment of infertility. Asian J Androl 13:69–75

    Article  CAS  PubMed  Google Scholar 

  • Calvin HI, Bedford JM (1971) Formation of disulphide bonds in the nucleus and accessory structures of mammalian spermatozoa during maturation in the epididymis. J Reprod Fertil Suppl 13(Suppl 13):65–75

    Google Scholar 

  • Castilla JA, Zamora S, Gonzalvo MC, Luna Del Castillo JD, Roldan-Nofuentes JA, Clavero A, Björndahl L, Martinez L (2010) Sperm chromatin structure assay and classical semen parameters: systematic review. Reprod Biomed Online 20:114–124

    Article  CAS  PubMed  Google Scholar 

  • Cohen J, Edwards R, Fehilly C, Fishel S, Hewitt J, Purdy J, Rowland G, Steptoe P, Webster J (1985) In vitro fertilization: a treatment for male infertility. Fertil Steril 43:422–432

    Article  CAS  PubMed  Google Scholar 

  • Cooper TG, Yeung CH (2003) Acquisition of volume regulatory response of sperm upon maturation in the epididymis and the role of the cytoplasmic droplet. Microsc Res Tech 61:28–38

    Article  PubMed  Google Scholar 

  • Cooper TG, Barfield JP, Yeung CH (2005) Changes in osmolality during liquefaction of human semen. Int J Androl 28:58–60

    Article  PubMed  Google Scholar 

  • Drevius LO (1963) Spiralization in tails of mammalian spermatozoa in hypotonic media. Nature 197:1123–1124

    Article  Google Scholar 

  • Drevius LO, Eriksson H (1966) Osmotic swelling of mammalian spermatozoa. Exp Cell Res 42:136–156

    Article  CAS  PubMed  Google Scholar 

  • Ekwurtzel E, Björndahl L, Kvist U (2011) A novel approach to study zinc-bridge dependent and disulfide bridge dependent stability for the protection of sperm DNA. In: 27th Annual meeting of the European Society on Human Reproduction and Embryology (ESHRE). Human Reproduction, Stockholm, Sweden, pp i123–i148

    Google Scholar 

  • Eliasson R, Kvist U (1976) Importance of seminal plasma factors for the structural stability of human spermatozoa. In: 1st Annual meeting of the American Society of Andrology. Andrologie, Boston

    Google Scholar 

  • Eliasson R, Lindholmer C (1972) Distribution and properties of spermatozoa in different fractions of split ejaculates. Fertil Steril 23:252–256

    Article  CAS  PubMed  Google Scholar 

  • Eshre Guideline Group on Good Practice in IVF Labs, De los Santos MJ, Apter S, Coticchio G, Debrock S, Lundin K, Plancha CE, Prados F, Rienzi L, Verheyen G et al (2016) Revised guidelines for good practice in IVF laboratories (2015). Hum Reprod 31:685–686

    Article  Google Scholar 

  • Evenson DP (2016) The sperm chromatin structure assay (SCSA((R))) and other sperm DNA fragmentation tests for evaluation of sperm nuclear DNA integrity as related to fertility. Anim Reprod Sci 169:56–75

    Article  CAS  PubMed  Google Scholar 

  • Faduola P, Kolade CO (2015) Sperm chromatin structure assay results in Nigerian men with unexplained infertility. Clin Exp Reprod Med 42:101–105

    Article  PubMed  PubMed Central  Google Scholar 

  • From Björk M, Björndahl L, Zackeri A, Kvist U (2009) Can sperm chromatin packaging influence results of sperm DNA integrity measures? Results of the TUNEL assay. In: 34th Annual meeting of the American Society of Andrology. Journal of Andrology, Philadelphia, PA, pp 40–41

    Google Scholar 

  • Holmes E (2020) On osmolality and sperm function during processing for assisted reproduction. In: ANOVA. Dept of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden, p 50

    Google Scholar 

  • Holmes E, Björndahl L, Kvist U (2011) Rapid post-ejaculatory change in osmolarity is related to prostatic factors and n may affect t sperm selection and sperm cryopreservation for ART. In: 27th Annual meeting of the European Society on Human Reproduction and Embryology (ESHRE). Human Reproduction, Sweden, Stockholm, pp i123–i148

    Google Scholar 

  • Holmes E, Björndahl L, Kvist U (2018) Osmolality changes in human semen in vitro and its implications for sperm density and motility. In: XIIIth International symposium on spermatology, Stockholm, Sweden

    Google Scholar 

  • Holmes E, Bjorndahl L, Kvist U (2019a) Possible factors influencing post-ejaculatory changes of the osmolality of human semen in vitro. Andrologia 51:e13443

    PubMed  Google Scholar 

  • Holmes E, Bjorndahl L, Kvist U (2019b) Post-ejaculatory increase in human semen osmolality in vitro. Andrologia 51:e13311

    PubMed  Google Scholar 

  • Holmes E, Bjorndahl L, Kvist U (2020) Hypotonic challenge reduces human sperm motility through coiling and folding of the tail. Andrologia:e13859

    Google Scholar 

  • Houska P, Björndahl L, Kvist U (2018) DTT treatment. Identifies samples with impaired sperm chromatin stability which have increased risk for DNA strand breaks. In: XIIIth International symposium on spermatology, Stockholm, Sweden

    Google Scholar 

  • Huret JL (1986) Nuclear chromatin decondensation of human sperm: a review. Arch Androl 16:97–109

    Article  CAS  PubMed  Google Scholar 

  • Huret JL, Miquereau MA (1984) Nuclear chromatin decondensation abilities of human sperm. Arch Androl 12(Suppl):19–22

    PubMed  Google Scholar 

  • Jeyendran RS, Van der Ven HH, Zaneveld LJ (1992) The hypoosmotic swelling test: an update. Arch Androl 29:105–116

    Google Scholar 

  • Keitel HG, Jones HS (1956) The mineral and water composition of normal human sperm. J Lab Clin Med 47:917–919

    CAS  PubMed  Google Scholar 

  • Kjellberg S (1993) Zinc and human sperm chromatin. Department of Gynecology and Obstetrics, University of Linköping, Linköping, p 69

    Google Scholar 

  • Kjellberg S, Björndahl L, Kvist U (1992) Sperm chromatin stability and zinc binding properties in semen from men in barren unions. Int J Androl 15:103–113

    Article  CAS  PubMed  Google Scholar 

  • Kölliker A (1856) Physiologische Studien über die Samenflussigkeit. Z Wiss Zool VII:201–272

    Google Scholar 

  • Kremer J (1968) The in vitro spermatozoal penetration test in fertility investigations. In: Obstetrics and gynaecology. University of Gorningen, The Netherlands, Groningen, p 171

    Google Scholar 

  • Kvist U (1980a) Importance of spermatozoal zinc as temporary inhibitor of sperm nuclear chromatin decondensation ability in man. Acta Physiol Scand 109:79–84

    Article  CAS  PubMed  Google Scholar 

  • Kvist U (1980b) Reversible inhibition of nuclear chromatin decondensation (NCD) ability of human spermatozoa induced by prostatic fluid. Acta Physiol Scand 109:73–78

    Article  CAS  PubMed  Google Scholar 

  • Kvist U (1980c) Sperm nuclear chromatin decondensation ability. An in vitro study on ejaculated human spermatozoa. Acta Physiol Scand 486:1–24

    CAS  Google Scholar 

  • Kvist U, Björndahl L (1985) Zinc preserves an inherent capacity for human sperm chromatin decondensation. Acta Physiol Scand 124:195–200

    Article  CAS  PubMed  Google Scholar 

  • Kvist U, Eliasson R (1978) Zinc dependent chromatin stability in human ejaculated spermatozoa. Int J Androl Suppl 1:178

    Google Scholar 

  • Kvist U, Eliasson R (1980) Influence of seminal plasma on the chromatin stability of ejaculated human spermatozoa. Int J Androl 3:130–142

    Article  CAS  PubMed  Google Scholar 

  • Kvist U, Björndahl L, Roomans GM, Lindholmer C (1985) Nuclear zinc in human epididymal and ejaculated spermatozoa. Acta Physiol Scand 125:297–303

    Article  CAS  PubMed  Google Scholar 

  • Kvist U, Kjellberg S, Björndahl L, Hammar M, Roomans GM (1988) Zinc in sperm chromatin and chromatin stability in fertile men and men in barren unions. Scand J Urol Nephrol 22:1–6

    Article  CAS  PubMed  Google Scholar 

  • Kvist U, Björndahl L, Pourian M, Lilliehöök E (1994) Sperm selection with Percoll in hypertonic medium. In: IX Nordic IVF conference, Röros, Norge

    Google Scholar 

  • Lilja H, Abrahamsson PA, Lundwall A (1989) Semenogelin, the predominant protein in human semen. Primary structure and identification of closely related proteins in the male accessory sex glands and on the spermatozoa. J Biol Chem 264:1894–1900

    Article  CAS  PubMed  Google Scholar 

  • Lindahl PE, Drevius LO (1964) Observations on bull spermatozoa in a hypotonic medium related to sperm mobility mechanisms. Exp Cell Res 36:632–646

    Article  CAS  PubMed  Google Scholar 

  • Lundquist F (1949) Aspects of the biochemistry of human semen. Acta Physiol Scand 19(Suppl 66):1–108

    Google Scholar 

  • MacLeod J, Gold RZ (1951) The male factor in fertility and infertility. III. An analysis of motile activity in the spermatozoa of 1000 fertile men and 1000 men in infertile marriage. Fertil Steril 2:187–204

    Article  CAS  PubMed  Google Scholar 

  • MacLeod J, Hotchkiss RS (1942) The distribution of spermatozoa and of certain chemical constituents in the human ejaculate. J Urol 48:225–229

    Article  CAS  Google Scholar 

  • Makler A, David R, Blumenfeld Z, Better OS (1981) Factors affecting sperm motility. VII. Sperm viability as affected by change of pH and osmolarity of semen and urine specimens. Fertil Steril 36:507–511

    Article  CAS  PubMed  Google Scholar 

  • Mann T (1964) The biochemistry of semen and of the male reproductive tract. Metheun & Co Ltd, London

    Google Scholar 

  • Mann T, Lutwak-Mann C (1981) Male reproductive function and semen. Springer-Verlag GmbH & Co, Berlin and Heidelberg

    Book  Google Scholar 

  • Miescher F (1878) Die Spermatozoen einiger Wirbelthiere. Verhandlungen der Naturforschenden Gesellschaft, Basel 6:138–209

    Google Scholar 

  • Petrunkina AM, Jebe E, Topfer-Petersen E (2005) Regulatory and necrotic volume increase in boar spermatozoa. J Cell Physiol 204:508–521

    Article  CAS  PubMed  Google Scholar 

  • Pettersson G, From Björk M, Björndahl L, Kvist U (2009) Can sperm chromatin packaging influence results of sperm DNA integrity measures? Results from acridin orange flow cytometry. In: 9th International congress of andrology. Journal of Andrology, Barcelona, Spain, pp 108–109

    Google Scholar 

  • Pourian M, Björndahl L, Kvist U (2000) On semen osmolality. In: 1st European congress of andrology. Aquila, Italy

    Google Scholar 

  • Quinlivan WL (1972) The effect of temperature on the proteins of human seminal plasma during storage. Fertil Steril 23:163–167

    Article  CAS  PubMed  Google Scholar 

  • Ringertz NR, Gledhill BL, Darzynkiewicz Z (1970) Changes in deoxyribonucleoprotein during spermiogenesis in the bull. Sensitivity of DNA to heat denaturation. Exp Cell Res 62:204–218

    Article  CAS  PubMed  Google Scholar 

  • Roomans GM, Lundevall E, Björndahl L, Kvist U (1982) Removal of zinc from subcellular regions of human spermatozoa by EDTA treatment studied by X-ray microanalysis. Int J Androl 5:478–486

    Article  CAS  PubMed  Google Scholar 

  • Rossato M, Di Virgilio F, Foresta C (1996) Involvement of osmo-sensitive calcium influx in human sperm activation. Mol Hum Reprod 2:903–909

    Article  CAS  PubMed  Google Scholar 

  • Rossato M, Balercia G, Lucarelli G, Foresta C, Mantero F (2002) Role of seminal osmolarity in the reduction of human sperm motility. Int J Androl 25:230–235

    Article  CAS  PubMed  Google Scholar 

  • Rothschild V (1960) Freezing point depression of human seminal plasma. J Natl Med Assoc 52:6–7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valsa J, Skandhan KP, Khan PS, Sumangala B, Gondalia M (2012) Split ejaculation study: semen parameters and calcium and magnesium in seminal plasma. Cent European J Urol 65:216–218

    Article  PubMed  PubMed Central  Google Scholar 

  • Velazquez A, Pedron N, Delgado NM, Rosado A (1977) Osmolality and conductance of normal and abnormal human seminal plasma. Int J Fertil 22:92–97

    CAS  PubMed  Google Scholar 

  • World Health Organization (2010) WHO laboratory manual for the examination and processing of human semen, 5th edn. World Health Organization, Geneva

    Google Scholar 

  • Yeung CH, Barfield JP, Cooper TG (2006) Physiological volume regulation by spermatozoa. Mol Cell Endocrinol 250:98–105

    Article  CAS  PubMed  Google Scholar 

  • Yeung CH, Tuttelmann F, Bergmann M, Nordhoff V, Vorona E, Cooper TG (2009) Coiled sperm from infertile patients: characteristics, associated factors and biological implication. Hum Reprod 24:1288–1295

    Article  CAS  PubMed  Google Scholar 

  • Zollner U, Zollner KP, Dietl J, Steck T (2001) Semen sample collection in medium enhances the implantation rate following ICSI in patients with severe oligoasthenoteratozoospermia. Hum Reprod 16:1110–1114

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrik Kvist .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kvist, U. (2021). Common Challenges for Sperm In Vitro: Causes and Consequences. In: Björndahl, L., Flanagan, J., Holmberg, R., Kvist, U. (eds) XIIIth International Symposium on Spermatology. Springer, Cham. https://doi.org/10.1007/978-3-030-66292-9_30

Download citation

Publish with us

Policies and ethics