Skip to main content

Smart Home Load Analysis and LSTM-Based Short-Term Load Forecasting

  • Conference paper
  • First Online:
Innovations in Information and Communication Technologies (IICT-2020)

Abstract

Load forecasting is the main exploration field in the smart grid technologies. The classification of load forecasting depends on its target forecasting that ranges from minutes to years. Residential smart home load forecasting focuses on forecasting energy consumption of smart homes which is crucial when it comes to energy conservation and load management issues. This paper focuses on application and implementation of deep learning algorithm known as long short-term memory (LSTM) that predicts the load of residence hours or days ahead and the time series load analysis of the houses will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agana, N. A., Oleka, E., Awogbami, G., & Homaifar, A. (2018). Short-term load forecasting based on a hybrid deep learning model. In: Conference on Proceedings—IEEE SOUTHEASTCON (Vol. 2018-April, pp. 1–6).

    Google Scholar 

  • Hosein, s., & Hosein, P. (2017). Load forecasting using deep neural networks. In Conference on Innovative Smart Grid Technologies. IEEE Power & Energy Society, ISGT 2017.

    Google Scholar 

  • Joshi, M., & Singh, R. (2017). Short-term load forecasting approaches : A review. 01, 9–17.

    Google Scholar 

  • Kong, K., et al. (2017). Short-term residential load forecasting based on LSTM recurrent neural network (Vol. 3053, No. c, pp. 1–11).

    Google Scholar 

  • Mohammad, Y.-C. K. F., & Lee, K.-B. (2013). Short term load forecasting using deep neural networks (Vol. 3, No. 2, pp. 1–9).

    Google Scholar 

  • Shrestha, A. (2019). Review of deep learning algorithms and architectures. IEEE Access, 7, 53040–53065. Smart—UMass trace repository. https://traces.cs.umass.edu/index.php/Smart/Smart. Accessed July 31, 2019.

  • Wang, Y., Chen, Q., Hong, T., Kang, C., & Mar, C. Y. (2017). Review of smart meter data analytics : Applications, methodologies, and challenges, no. June (pp. 1–24).

    Google Scholar 

  • Yildiz, B., Bilbao, J. I., Dore, J., & Sproul, A. B. (2017). Recent advances in the analysis of residential electricity consumption and applications of smart meter data. Applied Energy, 1–25.

    Google Scholar 

  • Zhang, X. M., Grolinger, K., & Capretz, M. A. M. (2018). Forecasting residential energy consumption using support vector regressions, no. January 2019 (pp. 2006–2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandeep Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Araya, S., Rakesh, N., Kaur, M. (2021). Smart Home Load Analysis and LSTM-Based Short-Term Load Forecasting. In: Singh, P.K., Polkowski, Z., Tanwar, S., Pandey, S.K., Matei, G., Pirvu, D. (eds) Innovations in Information and Communication Technologies (IICT-2020). Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-66218-9_14

Download citation

Publish with us

Policies and ethics