Skip to main content

Development of Elemental Technologies for Magnetic Hyperthermia in Cancer Treatment

  • Conference paper
  • First Online:
11th Asian-Pacific Conference on Medical and Biological Engineering (APCMBE 2020)

Abstract

Hyperthermia utilizing magnetic particles has been widely studied as a possible method for cancer treatment in recent years. This method induces apoptosis (cell death) using heat generation from magnetic particles which are injected into a tumor region and subjected to an external high-frequency magnetic field. In previous studies, we succeeded in developing microsize thermosensitive ferromagnetic particles with a low Curie temperature of around 40–45 °C as a self-controlled heating element that possibly prevents the local overheating surrounding healthy tissues. Further, by utilizing the change of its permeability around its Curie temperature resulting in the change in the magnetic flux density around tumor region, we also developed a wireless temperature measurement. In addition, to localize magnetic particles which cannot be seen from the body surface, we also developed an automatic localization system by using a robot arm equipped with three detection coils symmetrically installed in heating coil. To make our proposed elemental technologies feasible in clinical settings, we have also been developing a magnetic hyperthermia system that can treat deep-seated tumors up to 5 cm. In this paper, we report our elemental technologies which have been developed so far such as heating elements, temperature and position monitoring technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization Homepage. https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed 28 Jan 2020

  2. Eduardo, M.: Physics of Thermal Therapy: Fundamentals and Clinical Applications, pp. 139–158, 1st edn. CRC Press, Boca Raton, FL, USA (2012)

    Google Scholar 

  3. Ihab, M.O., Venkatesha, N., Sulaiman, A., Sangaraju, S., Chandu, V.V.M.G.: Principles of magnetic hyperthermia: a focus on using multifunctional hybrid magnetic nanoparticles. Magnetochemistry 5, 67–106 (2019)

    Article  Google Scholar 

  4. Dutz, S., Hergt, R.: Magnetic particle hyperthermia – a promising tumour therapy? Nanotechnology 25(45), 452001 (2014)

    Article  Google Scholar 

  5. Minkowycz, W.J., Sparrow, E.M., Abraham, J.P.: Nanoparticle Heat Transfer and Fluid Flow, pp. 97–122. 1st edn. CRC Press, Boca Raton, FL, USA (2012)

    Google Scholar 

  6. Vanessa, F.C., Antonio, F., Clarisse, R., Manuel, B., Pedro, M., Senentxu, L.: Advances in magnetic nanoparticles for biomedical applications. Adv. Healthcare Mater. 7, 1700845 (2018)

    Article  Google Scholar 

  7. Jose, L.C., Antonio, V.: Biomedical applications of distally controlled magnetic nanoparticles. Trends Biotechnol. 27(8), 468–476 (2009)

    Article  Google Scholar 

  8. Loi, T., Takahashi, S., Onodera, H., Okita, K., Yabukami, S., Yokota, K., Furuya, M., Kanetaka, H., Miura, Y., Takahashi, H., Watanabe, Y., Akiyama, R.: A simple and rapid detection system for oral bacteria in liquid phase for point-of-care diagnostics using magnetic nanoparticles. AIP Adv. 9(12), 125325 (2019)

    Article  Google Scholar 

  9. Mitobe, K., Yoshimura, N.: Low-invasive heating and temperature measurement method for hyperthermia treatment using the metal coated ferromagnetic implant with low curie temperature. Proc. Biodev. 2011, 341–344 (2011)

    Google Scholar 

  10. Yamamoto, Y., Itoh, T., Irieda, T.: A heat dissipation study of iron oxide nanoparticles embedded an agar phantom for the purpose of magnetic fluid hyperthermia. J. Nanosci. Nanotechnol. 19(9), 5469–5475 (2019)

    Article  Google Scholar 

  11. Tong, S., Quinto, C.A., Zhang, L., Mohindra, P., Bao, G.: Size-dependent heating of magnetic iron oxide nanoparticles. ACS Nano 11(7), 6808–6816 (2017)

    Article  Google Scholar 

  12. Knopp, T., Sattel, T.F., Biederer, S., Rahmer, J., Weizenecker, J., Gleich, B., Borgert, J., Buzug, T.M.: Model-based reconstruction for magnetic particle imaging. IEEE Trans. Med. Imaging 29, 12–18 (2010)

    Article  Google Scholar 

  13. Murase, K., Mimura, A., Banura, N., Nishimoto, K., Takata, H.: Visualization of magnetic nanofibers using magnetic particle imaging. Open J. Med. Imag. 5, 56–65 (2015)

    Article  Google Scholar 

  14. Hamanaga, S., Yoshida, T., Sasayama, T., Elrefai, A.L., Enpuku, K.: Three-dimensional detection of magnetic nanoparticles using a field-free line with weak field gradient and multiple pickup coils. Jpn. J. Appl. Phys. 58, 061001 (2019)

    Article  Google Scholar 

  15. Loi, T., Aki, F., Matsuda, E., Saito, H., Yoshimura, N., Mitobe, K.: Position adjustment method and distance estimation method of magnetic field supply and detection unit for magnetic hyperthermia. IEEJ Trans. Elect. Electron. Eng. 12(S2), S3–S9 (2017)

    Google Scholar 

  16. Garaio, E., Collantes, J.M., Garcia, J.A., Plazaola, F., Sandre, O.: Harmonic phases of the nanoparticle magnetization: An intrinsic temperature probe. Appl. Phys. Lett. 107(12), 123103 (2015)

    Article  Google Scholar 

  17. Loi, T., Saito, H., Miyamoto, R., Suzuki, M., Yoshimura, N., Mitobe, K.: Rotary scanning wireless temperature measurement method for hyperthermia using ferromagnetic implants. IEEJ Trans. Electr. Electron. Eng. 10, S1–S6 (2015)

    Article  Google Scholar 

  18. Loi, T., Aki, F., Matsuda, E., Saito, H., Yoshimura, N., Mitobe, K.: Body motion artifact reduction method using rotary scanning for accuracy improvement of wireless temperature measurement. IEEJ Trans. Fundam. Mater. 136(8), 529–534 (2016)

    Article  Google Scholar 

  19. Aoto, T., Takahashi, K., Hoshiyama, H., Yoshioka, Y., Yamada, T., Ota, S., Ikehata, Y., Yamada, S., Takemura, Y.: specific loss power of magnetic particles for hyperthermia excited by pancake-type applicator. IEEJ Trans. Fund. Mater. 137(8), 476–480 (2017)

    Article  Google Scholar 

  20. Aki, F., Loi, T., Saito, H., Mitobe, K.: Examination of the influence on precision of the wireless temperature measurement induction heating system by 37 °C constant temperature environment. IEEJ Trans. Fund. Mater. 54(6), 2800303 (2018)

    Google Scholar 

  21. Yamada, S., Ikehata, Y., Hayashi, R.: Double Pancake Exciting Coils With Back Yoke For Magnetics Field Generator To Medical Treatment. In: Asia-Pacific Symposium on Applied Electromagnetics and Mechanics (APSAEM2014) 23(3), 591–594 (2015)

    Google Scholar 

  22. Aki, F., Loi, T., Saito, H., Yoshimura, N., Mitobe, K.: Study of wireless temperature measurement induction heating system using magnetic properties of au-coated ferromagnetic implant with low curie temperature. Electron Comm Jpn. 101, 58–66 (2018)

    Article  Google Scholar 

  23. Aki, F., Loi, T., Saito, H., Yoshimura, N., Mitobe, K.: Study on wireless temperature measurement induction heating system using magnetic properties of mixture of Resovist® and ferromagnetic implant with low curie temperature. IEEJ Trans. Fund. Mater. 139(1), 38–44 (2019)

    Article  Google Scholar 

  24. Loi, T., Yamamoto, Y., Aki, F., Saito, H., Mitobe, K.: Magnetic field dependence of heating property of resovist® for magnetic hyperthermia. IEEJ Trans. Electr. Electron. Eng. 14(4), 648–649 (2019)

    Article  Google Scholar 

  25. Loi, T., Yamamoto, Y., Aki, F., Saito, H., Mitobe, K.: Thermosensitive ferromagnetic implant for hyperthermia using a mixture of magnetic micro-/nanoparticles. IEEE Trans. Magn. 54(7), 5400506 (2018)

    Google Scholar 

  26. Loi, T., Yamamoto, Y., Aki, F., Saito, H., Mitobe, K.: Thermosensitive implant for magnetic hyperthermia by mixing micro-magnetic and nano-magnetic particles. IEEE Trans. Magn. 54(6), 5400104 (2018)

    Google Scholar 

Download references

Acknowledgment

This work was supported by Grant-in-Aid for Scientific Research (KAKENHI) under Grant 19K23597 and 18H03545, all from Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loi Tonthat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tonthat, L., Aki, F., Mitobe, K., Yabukami, S., Yamamoto, Y. (2021). Development of Elemental Technologies for Magnetic Hyperthermia in Cancer Treatment. In: Shiraishi, Y., Sakuma, I., Naruse, K., Ueno, A. (eds) 11th Asian-Pacific Conference on Medical and Biological Engineering. APCMBE 2020. IFMBE Proceedings, vol 82. Springer, Cham. https://doi.org/10.1007/978-3-030-66169-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66169-4_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66168-7

  • Online ISBN: 978-3-030-66169-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics