Skip to main content

Hybridized Deep Learning Architectures for Human Activity Recognition

  • Conference paper
  • First Online:
Artificial Intelligence Research (SACAIR 2021)

Abstract

Human activity recognition using video data has been an active research area in computer vision for many years. Various approaches were introduced to efficaciously recognize human activities. This study focuses on identifying activities performed by single individuals using visual information from short video clips. Several deep learning techniques are exploited to develop an architecture to effectively solve the human activity recognition task. The architecture hybridizes a two-stream neural network with a multi-layer perception (MLP). The two-stream neural network is a temporal segment network (TSN) which consists of a spatial and a temporal stream. The architecture adopts Octave Convolution neural networks as frame-level feature extractors in the temporal segment network (TSN). The optical flow calculations were performed using the FlowNet 2.0 algorithm, which serves as inputs to the temporal stream. This newly developed architecture was trained and evaluated on the KTH human activity dataset. The results obtained are competitive to existing state-of-the-art results.

The support of the Centre for High Performance Computing (CHPC) is gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, Y., et al.: Drop an octave: reducing spatial redundancy in convolutional neural networks with octave convolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3435–3444 (2019)

    Google Scholar 

  2. Zhang, H.B., et al.: A comprehensive survey of vision-based human action recognition methods. Sensors 19(5), 1005 (2019)

    Article  Google Scholar 

  3. Kang, S.M., Wildes, R.P.: Review of action recognition and detection methods. arXiv preprint arXiv:1610.06906 (2016)

  4. Chandni, Khurana, R., Kushwaha A.K.S: Delving deeper with dual-stream CNN for activity recognition. In: Khare, A., Tiwary, U., Sethi, I., Singh, N. (eds.) Recent Trends in Communication, Computing, and Electronics. LNEE, vol. 524, pp. 333–342. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-2685-1_32

    Chapter  Google Scholar 

  5. Bilkhu, M., Ayyubi, H.: Human Activity Recognition for Edge Devices. arXiv preprint arXiv:1903.07563 (2019)

  6. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

    Chapter  Google Scholar 

  7. Arif, S., Wang, J., Ul Hassan, T., Fei, Z.: 3D-CNN-based fused feature maps with LSTM applied to action recognition. Fut. Internet 11(2), 42 (2019)

    Article  Google Scholar 

  8. Song, S., Cheung, N.M., Chandrasekhar, V., Mandal, B.: Deep adaptive temporal pooling for activity recognition. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 1829–1837 (October 2018)

    Google Scholar 

  9. Baccouche, M., Mamalet, F., Wolf, C., Garcia, C., Baskurt, A.: Sequential deep learning for human action recognition. In: Salah, A.A., Lepri, B. (eds.) HBU 2011. LNCS, vol. 7065, pp. 29–39. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25446-8_4

    Chapter  Google Scholar 

  10. Ullah, M., Ullah, H., Alseadonn, I.M.: Human action recognition in videos using stable features. Sig. Image Process. Int. J. (SIPIJ) 8(6), 1–10 (2017)

    Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  12. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations (2015)

    Google Scholar 

  13. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \(<\)0.5 MB model size. arXiv preprint arXiv:1602.07360 (2016)

  14. Han, S., Mao, H., Dally, W.: Deep compression: compressing deep neural network with pruning, trained quantization and Huffman coding. In: 4th International Conference on Learning Representations (2016)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015)

    Google Scholar 

  16. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0: evolution of optical flow estimation with deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2462–2470 (2017)

    Google Scholar 

  17. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach. In: 2004 Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 3, pp. 32–36. IEEE (August 2004)

    Google Scholar 

  18. Shi, Y., Tian, Y., Wang, Y., Huang, T.: Sequential deep trajectory descriptor for action recognition with three-stream CNN. IEEE Trans. Multimedia 19(7), 1510–1520 (2017)

    Article  Google Scholar 

  19. Shi, Y., Zeng, W., Huang, T., Wang, Y.: Learning deep trajectory descriptor for action recognition in videos using deep neural networks. In: 2015 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (June 2015)

    Google Scholar 

  20. Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and appearance. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 428–441. Springer, Heidelberg (2006). https://doi.org/10.1007/11744047_33

    Chapter  Google Scholar 

  21. Scovanner, P., Ali, S., Shah, M.: A 3-dimensional sift descriptor and its application to action recognition. In: Proceedings of the 15th ACM International Conference on Multimedia, pp. 357–360. ACM (September 2007)

    Google Scholar 

  22. Caetano, C., dos Santos, J.A., Schwartz, W.R.: Optical flow co-occurrence matrices: a novel spatiotemporal feature descriptor. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 1947–1952. IEEE (December 2016)

    Google Scholar 

  23. Al-Akam, R., Paulus, D.: Dense 3D optical flow co-occurrence matrices for human activity recognition. In: Proceedings of the 5th International Workshop on Sensor-Based Activity Recognition and Interaction, p. 16. ACM (September 2018)

    Google Scholar 

  24. Samir, H., El Munim, H.E.A., Aly, G.: Suspicious human activity recognition using statistical features. In: 2018 13th International Conference on Computer Engineering and Systems (ICCES), pp. 589–594. IEEE (December 2018)

    Google Scholar 

  25. Khan, M.A., Akram, T., Sharif, M., Javed, M.Y., Muhammad, N., Yasmin, M.: An implementation of optimized framework for action classification using multilayers neural network on selected fused features. Pattern Anal. Appl. 22(4), 1377–1397 (2019)

    Article  MathSciNet  Google Scholar 

  26. Qi, M., Wang, Y., Qin, J., Li, A., Luo, J., Van Gool, L.: stagNet: an attentive semantic RNN for group activity and individual action recognition. In: IEEE Transactions on Circuits and Systems for Video Technology (2019)

    Google Scholar 

  27. Jaouedi, N., Boujnah, N., Bouhlel, M.S.: A new hybrid deep learning model for human action recognition. J. King Saud Univ. Comput. Inf. Sci 32(4), 447–453 (2020)

    Google Scholar 

  28. Tong, M., Wang, H., Tian, W., Yang, S.: Action recognition new framework with robust 3D-TCCHOGAC and 3D-HOOFGAC. Multimedia Tools Appl. 76(2), 3011–3030 (2017)

    Article  Google Scholar 

  29. Shao, L., Liu, L., Yu, M.: Kernelized multiview projection for robust action recognition. Int. J. Comput. Vis. 118(2), 115–129 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley Joel Pillay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pillay, B.J., Pillay, A.W., Jembere, E. (2020). Hybridized Deep Learning Architectures for Human Activity Recognition. In: Gerber, A. (eds) Artificial Intelligence Research. SACAIR 2021. Communications in Computer and Information Science, vol 1342. Springer, Cham. https://doi.org/10.1007/978-3-030-66151-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66151-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66150-2

  • Online ISBN: 978-3-030-66151-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics