Skip to main content

Corneal Biomechanics and Integrated Parameters for Keratoconus Diagnosis

  • Chapter
  • First Online:
New Frontiers for the Treatment of Keratoconus

Abstract

Keratoconus (KC) and ectatic corneal diseases represent a contemporary and hot topic of research. Recent improvements in the diagnosis of corneal ectasia are associated with two main reasons: the need for an enhanced screening of refractive surgery candidates and the development of new treatment modalities for keratoconus and ectatic corneal diseases.

Placido disk-based corneal topography evolved into 3D corneal tomographic evaluation, and some studies have demonstrated the ability of corneal tomography to augment sensitivity to detect abnormalities in topographically normal eyes of patients with very asymmetric KC. However, there is a consensus that ectasia occurs as a result of a biomechanical decompensation, so the investigation of corneal biomechanical properties should be essential for enhancing accuracy to identify milder forms of ectatic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seiler T, Quurke AW. Iatrogenic keratectasia after LASIK in a case of forme fruste keratoconus. J Cataract Refract Surg. 1998;24:1007–9.

    Article  CAS  PubMed  Google Scholar 

  2. Ambrosio R Jr, Randleman JB. Screening for ectasia risk: what are we screening for and how should we screen for it? J Refract Surg (Thorofare, NJ : 1995). 2013;29:230–2.

    Article  Google Scholar 

  3. Binder PS. Ectasia after laser in situ keratomileusis. J Cataract Refract Surg. 2003;29:2419–29.

    Article  PubMed  Google Scholar 

  4. McGhee CN, Kim BZ, Wilson PJ. Contemporary treatment paradigms in keratoconus. Cornea. 2015;34(Suppl 10):S16–23.

    Article  PubMed  Google Scholar 

  5. Ambrosio R Jr, Faria-Correia F, Silva-Lopes I, Azevedo- Wagner A, Tanos FW, Lopes B, Salomão M. Paradigms, paradoxes and controversies on keratoconus and corneal ectatic diseases. Int J Keratoconus Ectatic Corneal Dis. 2018;7:35–49.

    Article  Google Scholar 

  6. Maeda N, Klyce SD, Smolek MK, Thompson HW. Automated keratoconus screening with corneal topography analysis. Invest Ophthalmol Vis Sci. 1994;35:2749–57.

    CAS  PubMed  Google Scholar 

  7. Maguire LJ, Bourne WM. Corneal topography of early keratoconus. Am J Ophthalmol. 1989;108:107–12.

    Article  CAS  PubMed  Google Scholar 

  8. Ambrosio R Jr, Valbon BF, Faria-Correia F, Ramos I, Luz A. Scheimpflug imaging for laser refractive surgery. Curr Opin Ophthalmol. 2013;24:310–20.

    Article  PubMed  Google Scholar 

  9. Smadja D, Touboul D, Cohen A, Doveh E, Santhiago MR, Mello GR, et al. Detection of subclinical keratoconus using an automated decision tree classification. Am J Ophthalmol. 2013;156:237–46.e1.

    Article  PubMed  Google Scholar 

  10. Saad A, Gatinel D. Topographic and tomographic properties of forme fruste keratoconus corneas. Invest Ophthalmol Vis Sci. 2010;51:5546–55.

    Article  PubMed  Google Scholar 

  11. Golan O, Piccinini AL, Hwang ES, De Oca Gonzalez IM, Krauthammer M, Khandelwal SS, et al. Distinguishing highly asymmetric keratoconus eyes using dual Scheimpflug/placido analysis. Am J Ophthalmol. 2019;201:46.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hwang ES, Perez-Straziota CE, Kim SW, Santhiago MR, Randleman JB. Distinguishing highly asymmetric keratoconus eyes using combined Scheimpflug and spectral-domain OCT analysis. Ophthalmology. 2018;125:1862–71.

    Article  PubMed  Google Scholar 

  13. Ambrosio R Jr, Lopes BT, Faria-Correia F, Salomao MQ, Buhren J, Roberts CJ, et al. Integration of Scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J Refract Surg (Thorofare, NJ : 1995). 2017;33:434–43.

    Article  Google Scholar 

  14. Luz A, Lopes B, Hallahan KM, Valbon B, Ramos I, Faria-Correia F, et al. Enhanced combined tomography and biomechanics data for distinguishing forme fruste keratoconus. J Refract Surg (Thorofare, NJ : 1995). 2016;32:479–94.

    Article  Google Scholar 

  15. Ambrosio R Jr, Belin M. Enhanced screening for ectasia risk prior to laser vision correction. Int J Keratoconus Ectatic Corneal Dis. 2017;6:23–33.

    Article  Google Scholar 

  16. Ambrosio R Jr, Nogueira LP, Caldas DL, Fontes BM, Luz A, Cazal JO, et al. Evaluation of corneal shape and biomechanics before LASIK. Int Ophthalmol Clin. 2011;51:11–38.

    Article  PubMed  Google Scholar 

  17. Ambrósio Junior R, Caldas DL, RSD S, Pimentel LN, BDF V. Impacto da análise do “wavefront” na refratometria de pacientes com ceratocone. Rev Bras Oftalmol. 2010;69:294–300.

    Article  Google Scholar 

  18. Gomes JA, Tan D, Rapuano CJ, Belin MW, Ambrosio R Jr, Guell JL, et al. Global consensus on keratoconus and ectatic diseases. Cornea. 2015;34:359–69.

    Article  PubMed  Google Scholar 

  19. Roberts CJ, Dupps WJ Jr. Biomechanics of corneal ectasia and biomechanical treatments. J Cataract Refract Surg. 2014;40:991–8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Salomão M, Hoffling-Lima AL, Lopes B, Belin MW, Sena N, Dawson DG, et al. Recent developments in keratoconus diagnosis. Exp Rev Ophthalmol. 2018;13:329–41.

    Article  CAS  Google Scholar 

  21. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005;31:156–62.

    Article  PubMed  Google Scholar 

  22. Roberts CJ. Concepts and misconceptions in corneal biomechanics. J Cataract Refract Surg. 2014;40:862–9.

    Article  PubMed  Google Scholar 

  23. Pinero DP, Alcon N. In vivo characterization of corneal biomechanics. J Cataract Refract Surg. 2014;40:870–87.

    Article  PubMed  Google Scholar 

  24. Shah S, Laiquzzaman M, Bhojwani R, Mantry S, Cunliffe I. Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. Invest Ophthalmol Vis Sci. 2007;48:3026–31.

    Article  PubMed  Google Scholar 

  25. Shah S, Laiquzzaman M. Comparison of corneal biomechanics in pre and post-refractive surgery and keratoconic eyes by ocular response analyser. Contact Lens Anterior Eye: J Br Contact Lens Assoc. 2009;32:129–32. quiz 51

    Article  Google Scholar 

  26. Fontes BM, Ambrosio Junior R, Jardim D, Velarde GC, Nose W. Ability of corneal biomechanical metrics and anterior segment data in the differentiation of keratoconus and healthy corneas. Arq Bras Oftalmol. 2010;73:333–7.

    Article  PubMed  Google Scholar 

  27. Fontes BM, Ambrosio R Jr, Jardim D, Velarde GC, Nose W. Corneal biomechanical metrics and anterior segment parameters in mild keratoconus. Ophthalmology. 2010;117:673–9.

    Article  PubMed  Google Scholar 

  28. Galletti JD, Ruisenor Vazquez PR, Fuentes Bonthoux F, Pfortner T, Galletti JG. Multivariate analysis of the ocular response analyzer’s corneal deformation response curve for early keratoconus detection. J Ophthalmol. 2015;2015:496382.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hallahan KM, Sinha Roy A, Ambrosio R Jr, Salomao M, Dupps WJ Jr. Discriminant value of custom ocular response analyzer waveform derivatives in keratoconus. Ophthalmology. 2014;121:459–68.

    Article  PubMed  Google Scholar 

  30. Ventura BV, Machado AP, Ambrosio R Jr, Ribeiro G, Araujo LN, Luz A, et al. Analysis of waveform-derived ORA parameters in early forms of keratoconus and normal corneas. J Refract Surg (Thorofare, NJ : 1995). 2013;29:637–43.

    Article  Google Scholar 

  31. Luz A, Fontes BM, Lopes B, Ramos I, Schor P, Ambrosio R Jr. ORA waveform-derived biomechanical parameters to distinguish normal from keratoconic eyes. Arq Bras Oftalmol. 2013;76:111–7.

    Article  PubMed  Google Scholar 

  32. Mikielewicz M, Kotliar K, Barraquer RI, Michael R. Air-pulse corneal applanation signal curve parameters for the characterisation of keratoconus. Br J Ophthalmol. 2011;95:793–8.

    Article  PubMed  Google Scholar 

  33. Ambrosio R Jr, Ramos I, Luz A, Faria-Correia F, Steinmueller A, Krug M, et al. Dynamic ultra-high speed Scheimpflug imaging for assessing corneal biomechanical properties. Rev Bras Oftalmol. 2013;72:99.

    Article  Google Scholar 

  34. Bao F, Deng M, Wang Q, Huang J, Yang J, Whitford C, et al. Evaluation of the relationship of corneal biomechanical metrics with physical intraocular pressure and central corneal thickness in ex vivo rabbit eye globes. Exp Eye Res. 2015;137:11–7.

    Article  CAS  PubMed  Google Scholar 

  35. Bao F, Huang Z, Huang J, Wang J, Deng M, Li L, et al. Clinical evaluation of methods to correct intraocular pressure measurements by the Goldmann applanation tonometer, ocular response analyzer, and Corvis ST tonometer for the effects of corneal stiffness parameters. J Glaucoma. 2016;25:510–9.

    Article  PubMed  Google Scholar 

  36. Joda AA, Shervin MM, Kook D, Elsheikh A. Development and validation of a correction equation for Corvis tonometry. Comput Methods Biomech Biomed Engin. 2016;19:943–53.

    Article  PubMed  Google Scholar 

  37. Valbon BF, Ambrosio R Jr, Fontes BM, Alves MR. Effects of age on corneal deformation by non-contact tonometry integrated with an ultra-high-speed (UHS) Scheimpflug camera. Arq Bras Oftalmol. 2013;76:229–32.

    Article  PubMed  Google Scholar 

  38. Faria-Correia F, Ramos I, Valbon B, Luz A, Roberts CJ, Ambrosio R Jr. Scheimpflug-based tomography and biomechanical assessment in pressure-induced stromal keratopathy. J Refract Surg. 2013;29:356–8.

    Article  PubMed  Google Scholar 

  39. Ali NQ, Patel DV, McGhee CN. Biomechanical responses of healthy and keratoconic corneas measured using a noncontact scheimpflug-based tonometer. Invest Ophthalmol Vis Sci. 2014;55:3651–9.

    Article  PubMed  Google Scholar 

  40. Steinberg J, Katz T, Lucke K, Frings A, Druchkiv V, Linke SJ. Screening for keratoconus with new dynamic biomechanical in vivo Scheimpflug analyses. Cornea. 2015;34:1404–12.

    Article  PubMed  Google Scholar 

  41. Salomão MQ, Faria-Correa F, Ramos I, Luz A, Ambrósio RJ. Corneal deformation response with dynamic ultra-high-speed scheimpflug imaging for detecting ectatic corneas. Int J Keratoconus Ectatic Corneal Dis. 2016;5:1–5.

    Article  Google Scholar 

  42. Bak-Nielsen S, Pedersen IB, Ivarsen A, Hjortdal J. Dynamic Scheimpflug-based assessment of keratoconus and the effects of corneal cross-linking. J Refract Surg. 2014;30:408–14.

    Article  PubMed  Google Scholar 

  43. Tian L, Huang YF, Wang LQ, Bai H, Wang Q, Jiang JJ, et al. Corneal biomechanical assessment using corneal visualization scheimpflug technology in keratoconic and normal eyes. J Ophthalmol. 2014;2014:147516.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Koprowski R, Ambrosio R Jr. Quantitative assessment of corneal vibrations during intraocular pressure measurement with the air-puff method in patients with keratoconus. Comput Biol Med. 2015;66:170–8.

    Article  PubMed  Google Scholar 

  45. Pena-Garcia P, Peris-Martinez C, Abbouda A, Ruiz-Moreno JM. Detection of subclinical keratoconus through non-contact tonometry and the use of discriminant biomechanical functions. J Biomech. 2016;49:353–63.

    Article  PubMed  Google Scholar 

  46. Wang LK, Tian L, Zheng YP. Determining in vivo elasticity and viscosity with dynamic Scheimpflug imaging analysis in keratoconic and healthy eyes. J Biophotonics. 2016;9:454.

    Article  PubMed  Google Scholar 

  47. Sedaghat MR, Momeni-Moghaddam H, Ambrosio R Jr, Heidari HR, Maddah N, Danesh Z, et al. Diagnostic ability of corneal shape and biomechanical parameters for detecting frank keratoconus. Cornea. 2018;37:1025–34.

    Article  PubMed  Google Scholar 

  48. Kataria P, Padmanabhan P, Gopalakrishnan A, Padmanaban V, Mahadik S, Ambrosio R Jr. Accuracy of Scheimpflug-derived corneal biomechanical and tomographic indices for detecting subclinical and mild keratectasia in a south Asian population. J Cataract Refract Surg. 2018;45:328.

    Article  PubMed  Google Scholar 

  49. Tian L, Ko MW, Wang LK, Zhang JY, Li TJ, Huang YF, et al. Assessment of ocular biomechanics using dynamic ultra high-speed Scheimpflug imaging in keratoconic and normal eyes. J Refract Surg. 2014;30:785–91.

    Article  PubMed  Google Scholar 

  50. Vinciguerra R, Ambrosio R Jr, Elsheikh A, Roberts CJ, Lopes B, Morenghi E, et al. Detection of keratoconus with a new biomechanical index. J Refract Surg (Thorofare, NJ : 1995). 2016;32:803–10.

    Article  Google Scholar 

  51. Sedaghat MR, Momeni-Moghaddam H, Ambrosio R Jr, Roberts CJ, Yekta AA, Danesh Z, et al. Long-term evaluation of corneal biomechanical properties after corneal cross-linking for keratoconus: a 4-year longitudinal study. J Refract Surg (Thorofare, NJ : 1995). 2018;34:849–56.

    Article  Google Scholar 

  52. Ferreira-Mendes J, Lopes BT, Faria-Correia F, Salomao MQ, Rodrigues-Barros S, Ambrosio R Jr. Enhanced ectasia detection using corneal tomography and biomechanics. Am J Ophthalmol. 2019;197:7–16.

    Article  PubMed  Google Scholar 

  53. Salomao MQ, Hofling-Lima AL, Faria-Correia F, Lopes BT, Rodrigues-Barros S, Roberts CJ, et al. Dynamic corneal deformation response and integrated corneal tomography. Indian J Ophthalmol. 2018;66:373–82.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dupps WJ Jr, Roberts CJ. Corneal biomechanics: a decade later. J Cataract Refract Surg. 2014;40:857.

    Article  PubMed  Google Scholar 

  55. Dupps WJ Jr, Wilson SE. Biomechanics and wound healing in the cornea. Exp Eye Res. 2006;83:709–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Seiler TG, Shao P, Eltony A, Seiler T, Yun SH. Brillouin spectroscopy of normal and keratoconus corneas. Am J Ophthalmol. 2019;202:118.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yun SH, Chernyak D. Brillouin microscopy: assessing ocular tissue biomechanics. Curr Opin Ophthalmol. 2018;29:299–305.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Financial Disclosure(s)

Dr. Ambrósio is a consultant for OCULUS Optikgeräte GmbH.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Electronic Supplementary Material

Short video mentioning the main topics related to this chapter (MOV 44948 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salomão, M.Q., Lima, A.L.H., Mello, J., Sena, N.B., Ambrósio, R. (2021). Corneal Biomechanics and Integrated Parameters for Keratoconus Diagnosis. In: Carriazo, C., Cosentino, M.J. (eds) New Frontiers for the Treatment of Keratoconus. Springer, Cham. https://doi.org/10.1007/978-3-030-66143-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66143-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66142-7

  • Online ISBN: 978-3-030-66143-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics