Skip to main content

YOLOv5 versus YOLOv3 for Apple Detection

  • Chapter
  • First Online:
Cyber-Physical Systems: Modelling and Intelligent Control

Abstract

The use of the YOLOv3 and YOLOv5 algorithms for apple detection in fruit-harvesting robots are compared. It is shown that the YOLOv5 algorithm could detect apples in orchards without additional pre- and post-processing with 97.8% Recall (fruit detection rate), and 3.5% False Positive Rate (FPR). It is much better than YOLOv3 that gives 90.8% Recall and 7.8 FPR when combined with special pre- and post-processing procedures, and then 9.1% Recall and 10.0% FPR without pre- and post-processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bechar, A., Vigneault, C.: Agricultural robots for field operations: concepts and components. Biosyst. Eng. 149, 94–111 (2016). https://doi.org/10.1016/j.biosystemseng.2016.06.014

    Article  Google Scholar 

  2. Sistler, F.E.: Robotics and intelligent machines in agriculture. IEEE J. Robot. Autom. 3(1), 3–6 (1987). https://doi.org/10.1109/JRA.1987.1087074

    Article  Google Scholar 

  3. Ceres, R., Pons, J., Jiménez, A., Martín, J., Calderón, L.: Design and implementation of an aided fruit-harvesting robot (Agribot). Ind. Robot 25(5), 337–346 (1998). https://doi.org/10.1108/01439919810232440

    Article  Google Scholar 

  4. Edan, Y., Han, S.F., Kondo, N.: Automation in agriculture. In: Springer Handbook of Automation, pp. 1095–1128. Springer, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-540-78831-7_63

  5. Grift, T., Zhang, Q., Kondo, N., Ting, K.C.: A review of automation and robotics for the bio-industry. J. BioMechatron. Eng. 1(1), 37–54 (2008). https://journal.tibm.org.tw/wp-content/uploads/2013/06/2.-automation-and-robotics-for-the-bio-industry.pdf. Accessed 10 July 2020

  6. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: YOLOv3: an incremental improvement. In: Proceedings of the 31th IEEE Conference on Computer Vision and Pattern Recognition—CVPR 2018, pp. 1–6. Salt Lake City, UT, USA, 18–22 June 2018. https://arxiv.org/abs/1804.02767

  7. Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition—CVPR 2020, Virtual, pp. 10781–10790. 14–19 June 2020. https://arxiv.org/abs/1901.08043

  8. Bochkovskiy, A., Wang, Ch.-Y., Liao, H.-Yu.M.: YOLOv4: optimal speed and accuracy of object detection (2020). https://arxiv.org/abs/2004.10934. Accessed 10 July 2020

  9. Jocher, G., Nishimura, K., Mineeva, T., Vilariño, R.: YOLOv5 (2020). https://github.com/ultralytics/yolov5. Accessed 10 July 2020

  10. Kuznetsova, A., Maleva, T., Soloviev, V.: Using YOLOv3 algorithm with pre- and post-processing for apple detection in fruit-harvesting robot. Agronomy 10(7), 1016 (2020). https://doi.org/10.3390/agronomy10071016

    Article  Google Scholar 

  11. Kuznetsova, A., Maleva, T., Soloviev, V.: Detecting apples in orchards using YOLOv3. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12249, pp. 923–934. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58799-4_66

  12. Mao, W.H., Ji, B.P., Zhan, J.C., Zhang, X.C., Hu, X.A.: Apple location method for the apple harvesting robot. In: Proceedings of the 2nd International Congress on Image and Signal Processing—CIPE 2009, pp. 17–19. Tianjin, China, 7–19 October 2009. https://doi.org/10.1109/CISP.2009.5305224

  13. Bulanon, D.M., Kataoka, T.: A fruit detection system and an end effector for robotic harvesting of Fuji apples. Agric. Eng. Int. CIGR J. 12(1), 203–210 (2010). https://cigrjournal.org/index.php/Ejounral/article/view/1285/1319. Accessed 10 July 2020

  14. Wei, X., Jia, K., Lan, J., Li, Y., Zeng, Y., Wang, C.: Automatic method of fruit object extraction under complex agricultural background for vision system of fruit picking robot. Optics 125(12), 5684–5689 (2014). https://doi.org/10.1016/j.ijleo.2014.07.001

    Article  Google Scholar 

  15. Whittaker, A.D., Miles, G.E., Mitchell, O.R.: Fruit location in a partially occluded image. Trans. Am. Soc. Agric. Eng. 30(3), 591–596 (1987). https://doi.org/10.13031/2013.30444

  16. Xie, Z.Y., Zhang, T.Z., Zhao, J.Y.: Ripened strawberry recognition based on Hough transform. Trans. Chin. Soc. Agric. Mach. 38(3), 106–109 (2007)

    Google Scholar 

  17. Xie, Z., Ji, C., Guo, X., Zhu, S.: An object detection method for quasi-circular fruits based on improved Hough transform. Trans. Chin. Soc. Agric. Mach. 26(7), 157–162 (2010)

    Google Scholar 

  18. Kelman, E.E., Linker, R.: Vision-based localization of mature apples in tree images using convexity. Biosyst. Eng. 118(1), 174–185 (2014). https://doi.org/10.1016/j.biosystemseng.2013.11.007

    Article  Google Scholar 

  19. Xie, Z., Ji, C., Guo, X., Zhu, S.: Detection and location algorithm for overlapped fruits based on concave spots searching. Trans. Chin. Soc. Agric. Mach. 42(12), 191–196 (2011)

    Google Scholar 

  20. Zhao, J., Tow, J., Katupitiya, J.: On-tree fruit recognition using texture properties and color data. In: Proceeddings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 263–268. Edmonton, Canada, 2–6 August 2005. https://doi.org/10.1109/IROS.2005.1545592

  21. Rakun, J., Stajnko, D., Zazula, D.: Detecting fruits in natural scenes by using spatial-frequency based texture analysis and multiview geometry. Comput. Electron. Agric. 76(1), 80–88 (2011). https://doi.org/10.1016/j.compag.2011.01.007

    Article  Google Scholar 

  22. Parrish, E.A., Goksel, J.A.K.: Pictorial pattern recognition applied to fruit harvesting. Trans. Am. Soc. Agric. Eng. 20(5), 822–827 (1977). https://doi.org/10.13031/2013.35657

  23. Sites, P.W., Delwiche, M.J.: Computer vision to locate fruit on a tree. Trans. Am. Soc. Agric. Eng. 31(1), 257–263 (1988). https://doi.org/10.13031/2013.30697v

  24. Bulanon, D.M., Kataoka, T., Okamoto, H., Hata, S.: Development of a real-time machine vision system for apple harvesting robot. In: Proceedings of the Society of Instrument and Control Engineers Annual Conference, Sapporo, pp. 595–598. Japan, 4–6 August 2004. https://doi.org/10.11499/sicep.2004.0_108_5

  25. Seng, W.C., Mirisaee, S.H.: A new method for fruits recognition system. In: Proceedings of the 2009 International Conference on Electrical Engineering and Informatics—ICEEI 2009, vol. 1, pp. 130–134. Selangor, Malaysia, 5–7 August 2009. https://doi.org/10.1109/ICEEI.2009.5254804

  26. Wachs, J.P., Stern, H.I., Burks, T., Alchanatis, V.: Low and high-level visual feature-based apple detection from multi-modal images. Precis. Agric. 11, 717–735 (2010). https://doi.org/10.1007/s11119-010-9198-x

    Article  Google Scholar 

  27. Tao, Y., Zhou, J.: Automatic apple recognition based on the fusion of color and 3D feature for robotic fruit picking. Comput. Electron. Agric. 142(A), 388–396 (2017). https://doi.org/10.1016/j.compag.2017.09.019

    Article  Google Scholar 

  28. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems 25—NIPS 2012, pp. 1–9. Harrahs and Harveys, Lake Tahoe, Canada, 3–8 December 2012. https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf. Accessed 10 July 2020

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations—ICLR 2015, pp. 1–14. San Diego, CA, USA, 7–9 May 2015. https://arxiv.org/abs/1409.1556

  30. Williams, H.A.M., Jones, M.H., Nejati, M., Seabright, M.J., MacDonald, B.A.: Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms. Biosyst. Eng. 181, 140–156 (2019). https://doi.org/10.1016/j.biosystemseng.2019.03.007

    Article  Google Scholar 

  31. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition—CVPR 2016, pp. 779–788. Las Vegas, NV, USA, 26 June–1 July 2016. https://arxiv.org/abs/1506.02640

  32. Tian, Y., Yang, G., Wang, Zh., Wang, H., Li, E., Liang, Z.: Apple detection during different growth stages in orchards using the improved YOLO-V3 model. Comput. Electron. Agric. 157, 417–426 (2019). https://doi.org/10.1016/j.compag.2019.01.012

    Article  Google Scholar 

  33. Tian, Y., Yang, G., Wang, Zh., Li, E., Liang, Z.: Detection of Apple lesions in orchards based on deep learning methods of CycleGAN and YOLO-V3-Dense. J. Sens., Special Issue, Sensors in Precision Agriculture for the Monitoring of Plant Development and Improvement of Food Production, 1–14 (2019). https://doi.org/10.1155/2019/7630926

  34. Huang, G., Liu, Zh., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition—CVPR 2017, pp. 1–9. Honolulu, HI, USA, 22–25 July 2017. https://arxiv.org/abs/1608.06993

  35. Kang, H., Chen, C.: Fruit detection, segmentation and 3D visualization of environments in apple orchards. Comput. Electron. Agric. 171, 105302 (2020). https://doi.org/10.1016/j.compag.2020.105302

    Article  Google Scholar 

  36. Kang, H., Chen, C.: Fast implementation of real-time fruit detection in apple orchards using deep learning. Comput. Electron. Agric. 168, 105108 (2020). https://doi.org/10.1016/j.compag.2019.105108

    Article  Google Scholar 

  37. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006). https://doi.org/10.1016/j.patrec.2005.10.010

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The reported study was supported by RFBR, research project 18-00-01103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Kuznetsova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuznetsova, A., Maleva, T., Soloviev, V. (2021). YOLOv5 versus YOLOv3 for Apple Detection. In: Kravets, A.G., Bolshakov, A.A., Shcherbakov, M. (eds) Cyber-Physical Systems: Modelling and Intelligent Control. Studies in Systems, Decision and Control, vol 338. Springer, Cham. https://doi.org/10.1007/978-3-030-66077-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66077-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66076-5

  • Online ISBN: 978-3-030-66077-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics