Skip to main content

The Applying of the Formalism of Cyber-Physical Systems in the Description of Hydrodynamic Cavitation in a Direct-Flow Valve

  • Chapter
  • First Online:
Cyber-Physical Systems: Modelling and Intelligent Control

Abstract

The chapter provides a description of the bubble energy during its stochastic movement under conditions of hydrodynamic cavitation in the flow part of a direct-flow valve with a turn of the external shut-off shell depending on the throughput of the device from the standpoint of the energy method. The results of this description form the basis of stochastic modeling of the formation of the macrosystem of bubbles in this region and rely on the formalism of cyber-physical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Emerson, F.: Available online at: https://www.emerson.com/en-us/automation/fisher. Accessed 21 Jan 2020

  2. Mokveld. Axial flow valves by Mokveld. Available online at: https://mokveld.com/en/home. Accessed 21 Jan 2020

  3. TALIS. ERHARD. [Элeктpoнный pecypc]. Peжим дocтyпa: https://www.talis-group.com/brands/erhard.html. Accessed 21 Jan 2020

  4. Flowserve. Linear control valves. Available online at: https://www.flowserve.com/en/products/valves/linear-control-valves. Accessed 21 Jan 2020

  5. Tang, T.F., Gao, L., Li B., Liao, L., Xi, Y., Yang, G.: Cavitation optimization of a throttle orifice plate based on three-dimensional genetic algorithm and topology optimization. Structural and Multidisciplinary Optimization. 60(2), (2019). https://doi.org/10.1007/s00158-019-02249-z

  6. Ellas, E., Chambre, P.L.: Bubble transport in flashing flow. Int J. Multiphase Flow 26, 191–206 (2000)

    Article  Google Scholar 

  7. Koch, S., Garen, W., Hegedűs, F., Neu, W., Reuter, R., Teubner, U.: Time-resolved measurements of shock induced cavitation bubbles in liquids. Appl. Phys. 108, 345–351 (2012)

    Article  Google Scholar 

  8. Seung, S., Kwak, H.Y.: Shock wave propagation in bubbly liquids at small gas volume fractions. J. Mech. Sci. Technol. 31, 1223–1231 (2017). https://doi.org/10.1007/s12206-017-0221-2

    Article  Google Scholar 

  9. Kapranova, A.B., Lebedev, A.E., Neklyudov, S.V., Melzer, A.M.: Engineering method for calculating of an axial valve separator with an external location of the locking part. Front. Energy Res. Process Energy Syst. 8, 1–17 (2020). Article 32. https://doi.org/10.3389/fenrg.2020.00032

  10. Lebedev, A.E., Kapranova, A.B., Melzer, A.M., Solopov, S.A., Voronin, DV, Neklyudov, V.S, Serov, E.M.: Utility Patent 2657371 Russian Federation (2018), IPC F16K 1/12. Direct-flow control valve. Publ. 06.13.2018, Bull. No. 17

    Google Scholar 

  11. Klimontovich, Y.L.: Turbulent motion and chaos structure: a new approach to the statistical theory of open systems, pp. 328. LENAND, Moscow, (2014)

    Google Scholar 

  12. Canjuga, S.: Utility Patent WO2019220153A2 (2019), IPC F16K 37/00, F16K 27/02. Axial valve of the modular concept of construction. Publ. 11.21.2019

    Google Scholar 

  13. Weevers, H.H.: Utility Patent US4327757 (2019) IPC F16K 47/14. Control Valve. Publ. 05(04), 1982 (2019)

    Google Scholar 

  14. Kapranova, A.B., Lebedev, A.E., Melzer, A.M., Neklyudov, S.V.: About formation of elements of a cyber-physical system for efficient throttling of fluid in an axial valve. In: Kravets, A., Bolshakov, A., Shcherbakov, M. (eds.) Cyber-Physical Systems: Advances in Design & Modelling. Studies in Systems, Decision and Control, vol. 259, pp. 109–119. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32579-4_9

  15. Kapranova, A., Lebedev, A., Melzer, A., Neklyudov, S.: Determination of the average parameters of cavitation bubbles in the flowing part of the control valves. Int. J. Mech. Eng. Technol. (IJMET) 9(3), 25–31 (2018). Article ID: IJMET_09_03_003. Available online at https://www.iaeme/com/IJMET/issues.asp?JType=IJMET&VType=9&IType=3

  16. Kapranova A., Neklyudov S., Lebedev A., Melzer A.: Investigation of the energy of the stochastic motion of cavitation bubbles in the separator of the axial valve, depending on the degree of its opening. Int. J. Mech. Eng. Technol. (IJMET) 9(8), 160–166 (2018). Article ID: IJMET_09_08_017. Available online at https://www.iaeme.com/ijmet/issues.asp?JType=IJMET&VType=9&IType=8

  17. Kapranova A., Neklyudov S., Lebedev A., Melzer A.: Qualitative evaluation of the coefficient of hydraulic resistance in the area of the divider of the fluid flow of the axial valve. Int. J. Mech. Eng. Technol. (IJMET) 9(8), 153–159 (2018). Article ID: IJMET_09_08_016. Available online at https://www.iaeme.com/ijmet/issues.asp?JType=IJMET&VType=9&IType=8

  18. Besant, W.H.: Hydrostatics and hydrodynamics. 185. Art. 158. Cambridge University Press, London (1916)

    Google Scholar 

  19. Baron Rayleigh, J.W.S.: Scientific papers 6 1911–1919; Cambridge University Press, 1899–1920, reissued by the publisher, (2011) ISBN 978–0–511–70401–7

    Google Scholar 

  20. Plesset, M.S., Chapman, R.B.: Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J. Fluid Mech. 47(2), 125–141 (1971)

    Article  Google Scholar 

  21. Volmer, V., Weber, A.: Keimbildung in uebersaetigen Daempfen. Z. Phys. Chem. 119, 277–301 (1926)

    Google Scholar 

  22. Frenkel, Y.I.: Kinetic theory of liquids. 586 p. Nauka, Leningrad (1959)

    Google Scholar 

  23. Kedrinskii, V.K.: Hydrodynamics of Explosion: Experiments and Models (Shock Wave and High Pressure Phenomena), Chap. 7, pp. 307–344. Springer, Berlin. (2005)

    Google Scholar 

  24. Petrov, N., Schmidt, A.: Effect of a bubble nucleation model on cavitating flow structure in rarefaction wave. Shock Waves 27(4), 635–639 (2017). Springer. https://doi.org/10.1007/s00193-016-0699-z

  25. Seung, S., Kwak, H.Y.: Shock wave propagation in bubbly liquids at small gas volume fractions. J. Mech. Sci. Technol. 31, 1223–1231 (2017). https://doi.org/10.1007/s12206-017-0221-2.

  26. Kapranova, A.B., Lebedev, A.E., Neklyudov, S.V., Melzer, A.M.: The ensemble-averaged characteristics of the bubble system during cavitation in the separator. In: E3s Web of Conference. 140, 06005. Published online December 18, 2019. (2019). https://doi.org/10.1051/e3sconf/201914006005.

  27. Arzumanov, E.S.: Hydraulic regulatory bodies of automated control systems. 256 p. Engineering, Moscow (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Kapranova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kapranova, A.B., Lebedev, A.E., Melzer, A.M., Neklyudov, S.V., Brykalov, A.S. (2021). The Applying of the Formalism of Cyber-Physical Systems in the Description of Hydrodynamic Cavitation in a Direct-Flow Valve. In: Kravets, A.G., Bolshakov, A.A., Shcherbakov, M. (eds) Cyber-Physical Systems: Modelling and Intelligent Control. Studies in Systems, Decision and Control, vol 338. Springer, Cham. https://doi.org/10.1007/978-3-030-66077-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66077-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66076-5

  • Online ISBN: 978-3-030-66077-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics