Skip to main content

Performance Analysis of Complex Engineering Frameworks

  • Conference paper
  • First Online:
Tools for High Performance Computing 2018 / 2019

Abstract

Many engineering applications require complex frameworks to simulate the intricate and extensive sub-problems involved. However, performance analysis tools can struggle when the complexity of the application frameworks increases. In this paper, we share our efforts and experiences in analyzing the performance of CODA, a CFD solver for aircraft aerodynamics developed by DLR, ONERA, and Airbus, which is part of a larger framework for multi-disciplinary analysis in aircraft design. CODA is one of the key next-generation engineering applications represented in the European Centre of Excellence for Engineering Applications (EXCELLERAT). The solver features innovative algorithms and advanced software technology concepts dedicated to HPC. It is implemented in Python and C\(++\) and uses multi-level parallelization via MPI or GASPI and OpenMP. We present, from an engineering perspective, the state of the art in performance analysis tools, discuss the demands and challenges, and present first results of the performance analysis of a CODA performance test case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Civil Aviation Organization: Annual Report of the Council (2018)

    Google Scholar 

  2. Airbus: Airbus Global Market Forecast 2019–2038

    Google Scholar 

  3. Air Transport Action Group (ATAG): The economic and social benefits of air transport (2008)

    Google Scholar 

  4. Intergovernmental Panel on Climate Change (IPCC): Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the International Panel on Climate Change (2014)

    Google Scholar 

  5. Directorate-General for Mobility and Transport (European Commission), Directorate-General for Research and Innovation (European Commission): Flightpath 2050: Europe’s vision for aviation: maintaining global leadership and serving society’s needs (2012). https://doi.org/10.2777/15458

  6. Guiding concepts for DLR aeronautics research. https://www.dlr.de/EN/research/aeronautics/guiding-concepts.html. Accessed 08 Oct 2019

  7. Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU code: recent applications in research and industry. In: Proceedings of the European Conference on Computational Fluid Dynamics, ECCOMAS CFD (2006)

    Google Scholar 

  8. Leicht, T., Vollmer, D., Jägersküpper, J., Schwöppe, A., Hartmann, R., Fiedler, J., Schlauch, T.: DLR-project digital-X – next generation CFD solver ‘Flucs’. Deutscher Luft- und Raumfahrtkongress (2016)

    Google Scholar 

  9. Alrutz, T., Backhaus, J., Brandes, T., End, V., Gerhold, T., Geiger, A., Grünewald, D., Heuveline, V., Jägersküpper, J., Knüpfer, A., Krzikalla, O., Kügeler, E., Lojewski, C., Lonsdale, G., Müller-Pfefferkorn, R., Nagel, W.E., Oden, L., Pfreundt, F.-J., Rahn, M., Sattler, M., Schmidtobreick, M., Schiller, A., Simmendinger, C., Soddemann, T., Sutmann, G., Weber, H., Weiss, J.-P.: GASPI - a partitioned global address space programming interface. In: Facing the Multicore-Challenge III. LNCS, vol. 7686, pp. 135–136 (2013). https://doi.org/10.1007/978-3-642-35893-7_18

  10. Meinel, M., Einarsson, G.: The FlowSimulator framework for massively parallel CFD applications. In: PARA (2010)

    Google Scholar 

  11. FlowSimulator. https://gitlab.as.dlr.de. Accessed 08 Oct 2019

  12. The Python Profilers. https://docs.python.org/2/library/profile.html. Accessed 12 Sep 2019

  13. Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Müller, M.S., Nagel, W.E.: The Vampir performance analysis tool set. In: Tools for High Performance Computing, pp. 139–155 (2008). https://doi.org/10.1007/978-3-540-68564-7_9

  14. Geimer, M., Wolf, F., Wylie, B.J., Ábrahám, E., Becker, D., Mohr, B.: The Scalasca performance toolset architecture. Concurr. Comput.: Pract. Exp. 22(6), 702–719 (2010). https://doi.org/10.1002/cpe.1556

  15. Knüpfer, A., Rössel, C., Mey, D., Biersdorff, S., Diethelm, K., Eschweiler, D., Geimer, M., Gerndt, M., Lorenz, D., Malony, A., Nagel, W.E., Oleynik, Y., Philippen, P., Saviankou, P., Schmidl, D., Shende, S., Tschüter, R., Wagner, M., Wesarg, B., Wolf, F.: Score-P: a joint performance measurement run-time infrastructure for Periscope, Scalasca, TAU, and Vampir. In: Tools for High Performance Computing, vol. 2011, pp. 79–91 (2012). https://doi.org/10.1007/978-3-642-31476-6_7

  16. BSC Tools. http://tools.bsc.es. Accessed 12 Sep 2019

  17. Extrae instrumentation package. http://tools.bsc.es/extrae. Accessed 12 Sep 2019

  18. Paraver: a flexible performance analysis tool. http://tools.bsc.es/paraver. Accessed 12 Sep 2019

  19. Score-P Python bindings. https://github.com/score-p/scorep_binding_python. Accessed 08 Oct 2019

  20. Wagner, M., Doleschal, J., Knüpfer, A.: Tracing long running applications: a case study using Gromacs. In: Proceedings of the International Conference on High Performance Computing & Simulation (HPCS), pp. 129–136 (2015). https://doi.org/10.1109/HPCSim.2015.7237031

  21. Wagner, M., Doleschal, J., Knüpfer, A., Nagel, W.E.: Selective runtime monitoring: non-intrusive elimination of high-frequency functions. In: Proceedings of the International Conference on High Performance Computing & Simulation (HPCS), pp. 295–302 (2014). https://doi.org/10.1109/HPCSim.2014.6903698

  22. Wagner, M., Llort, G., Mercadal, E., Giménez, J, Labarta, J.: Performance analysis of parallel python applications. Procedia Comput. Sci. 108, 2171–2179 (2017). https://doi.org/10.1016/j.procs.2017.05.203

  23. The European Centre of Excellence for Engineering Applications (EXCELLERAT). http://www.excellerat.eu. Accessed 12 Sep 2019

  24. Devine, K., Boman, E., Heaphy, R., Hendrickson, B., Vaughan, C.: Zoltan data management services for parallel dynamic applications. Comput. Sci. Eng. 4(2), 90–97 (2002). https://doi.org/10.1109/5992.988653

  25. Wagner, M., Mohr, S., Giménez, J., Labarta, J.: A structured approach to performance analysis. In: Tools for High Performance Computing, vol. 2017, pp. 1–15 (2019). https://doi.org/10.1007/978-3-030-11987-4_1

  26. The European Centre of Excellence for Performance Optimization and Productivity (POP). http://www.pop-coe.eu. Accessed 12 Sep 2019

  27. Rosas, C., Giménez, J., Labarta, J.: Scalability prediction for fundamental performance factors. Supercomput. Front. Innov. 1(2) (2014). https://doi.org/10.14529/jsfi140201

Download references

Acknowledgements

This work has been supported by the EXCELLERAT project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 823691 and the German Federal Aviation Research Programme (LuFo) under grand agreement No. 20X1704A (cooperative project TOSCANA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wagner, M., Jägersküpper, J., Molka, D., Gerhold, T. (2021). Performance Analysis of Complex Engineering Frameworks. In: Mix, H., Niethammer, C., Zhou, H., Nagel, W.E., Resch, M.M. (eds) Tools for High Performance Computing 2018 / 2019. Springer, Cham. https://doi.org/10.1007/978-3-030-66057-4_6

Download citation

Publish with us

Policies and ethics