Skip to main content

A Multi-view Ensemble of Deep Models for the Detection of Deviant Process Instances

  • Conference paper
  • First Online:
ECML PKDD 2020 Workshops (ECML PKDD 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1323))

Abstract

Mining deviances from expected behaviors in process logs is a relevant problem in modern organizations, owing to their negative impact in terms of monetary/reputation losses. Most proposals to deviance mining combine the extraction of behavioral features from log traces with the induction of standard classifiers. Difficulties in capturing the multi-faceted nature of deviances with a single pattern family led to explore the possibility to mix up heterogeneous data views, obtained each with a different pattern family. Unfortunately, combining many pattern families tends to produce sparse and redundant representations that likely lead to the discovery of poor deviance-oriented classifiers. Using a multi-view ensemble learning approach to combine alternative trace representations was recently proven effective for this induction task. On the other hand, Deep Learning methods have been gaining momentum in prediction/classification tasks on process log data, owing to their flexibility and expressiveness. We here propose a novel multi-view ensemble-based framework for the discovery of deviance-oriented classifiers that profitably combines different single-view deep classifiers, sharing an ad hoc residual-like architecture (simulating fine-grain ensemble-like capabilities over each single data view). The approach, tested over real-life process log data, significantly improves previous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Despite such patters can explain more effectively deviances of processes with a high degree of parallelism, it was shown in [12] that they do not improve significantly the accuracy of deviance predictions, which is the main objective of our work. Thus, we here only focus on classical sequential patterns, for the sake of comparison with previous deviance-mining work.

  2. 2.

    Notice that \(y^{(i)}=1\) iff the i-th instance in the training set is deviant, and \(y^{(i)}=0\) otherwise.

References

  1. Appice, A., Andresini, G., Malerba, D.: Clustering-aided multi-view classification: a case study on Android malware detection. J. Intell. Inf. Syst. 55(1), 1–26 (2020). https://doi.org/10.1007/s10844-020-00598-6

    Article  Google Scholar 

  2. Bose, R.P.J.C., van der Aalst, W.M.P.: Discovering signature patterns from event logs. In: IEEE Symposium on Computational Intelligence and Data Mining (CIDM 2013), pp. 111–118 (2013)

    Google Scholar 

  3. Bose, R.P.J.C., van der Aalst, W.M.P.: Trace clustering based on conserved patterns: towards achieving better process models. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 170–181. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12186-9_16

    Chapter  Google Scholar 

  4. Camargo, M., Dumas, M., González-Rojas, O.: Learning accurate LSTM models of business processes. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 286–302. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26619-6_19

    Chapter  Google Scholar 

  5. Cuzzocrea, A., Folino, F., Guarascio, M., Pontieri, L.: A multi-view learning approach to the discovery of deviant process instances. In: Debruyne, C., et al. (eds.) OTM 2015. LNCS, vol. 9415, pp. 146–165. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26148-5_9

    Chapter  Google Scholar 

  6. Cuzzocrea, A., Folino, F., Guarascio, M., Pontieri, L.: A multi-view multi-dimensional ensemble learning approach to mining business process deviances. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 3809–3816 (2016)

    Google Scholar 

  7. Cuzzocrea, A., Folino, F., Guarascio, M., Pontieri, L.: A robust and versatile multi-view learning framework for the detection of deviant business process instances. Int. J. Cooper. Inf. Syst. 25(04), 1740003 (2016)

    Article  Google Scholar 

  8. van Dongen, B.: Real-life event logs - hospital log (2011). https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54

  9. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-56509-4

    Book  Google Scholar 

  10. Evermann, J., Rehse, J., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017)

    Article  Google Scholar 

  11. Folino, F., Pontieri, L.: Business process deviance mining. In: Sakr, S., Zomaya, A. (eds.) Encyclopedia of Big Data Technologies. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63962-8_100-1

    Chapter  Google Scholar 

  12. Genga, L., Potena, D., Chiorrini, A., Diamantini, C., Zannone, N.: A latitudinal study on the use of sequential and concurrency patterns in deviance mining. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) Complex Pattern Mining. SCI, vol. 880, pp. 103–119. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36617-9_7

    Chapter  Google Scholar 

  13. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, vol. 37, pp. 448–456 (2015)

    Google Scholar 

  15. Kratsch, W., Manderscheid, J., Röglinger, M., Seyfried, J.: Machine learning in business process monitoring: a comparison of deep learning and classical approaches used for outcome prediction. Bus. Inf. Syst. Eng. 1–16 (2020)

    Google Scholar 

  16. Kubat, M., Holte, R., Matwin, S.: Learning when negative examples abound. In: van Someren, M., Widmer, G. (eds.) ECML 1997. LNCS, vol. 1224, pp. 146–153. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62858-4_79

    Chapter  Google Scholar 

  17. Lin, L., Wen, L., Wang, J.: MM-PRED: a deep predictive model for multi-attribute event sequence. In: SIAM International Conference on Data Mining, pp. 118–126 (2019)

    Google Scholar 

  18. Lo, D., Cheng, H., Han, J., Khoo, S.C., Sun, C.: Classification of software behaviors for failure detection: a discriminative pattern mining approach. In: Proceedings of 15th International Conference on Knowledge Discovery and Data Mining (KDD 2009), pp. 557–566 (2009)

    Google Scholar 

  19. Nguyen, H., Dumas, M., La Rosa, M., Maggi, F.M., Suriadi, S.: Mining business process deviance: a quest for accuracy. In: Meersman, R., et al. (eds.) OTM 2014. LNCS, vol. 8841, pp. 436–445. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45563-0_25

    Chapter  Google Scholar 

  20. Pasquadibisceglie, V., Appice, A., Castellano, G., Malerba, D.: Using convolutional neural networks for predictive process analytics. In: International Conference on Process Mining, pp. 129–136 (2019)

    Google Scholar 

  21. Suriadi, S., Wynn, M.T., Ouyang, C., ter Hofstede, A.H.M., van Dijk, N.J.: Understanding process behaviours in a large insurance company in Australia: a case study. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 449–464. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38709-8_29

    Chapter  Google Scholar 

  22. Teinemaa, I., Dumas, M., La Rosa, M., Maggi, F.M.: Outcome-oriented predictive process monitoring: review and benchmark. ACM Trans. Knowl. Discov. Data (TKDD) 13(2), 1–57 (2019)

    Article  Google Scholar 

  23. Teinemaa, I., Dumas, M., Leontjeva, A., Maggi, F.M.: Temporal stability in predictive process monitoring. Data Min. Knowl. Disc. 32(5), 1306–1338 (2018). https://doi.org/10.1007/s10618-018-0575-9

    Article  MathSciNet  Google Scholar 

  24. Van Der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business Processes, vol. 2 (2011)

    Google Scholar 

  25. Webb, G.I., Boughton, J.R., Wang, Z.: Not so Naive Bayes: aggregating one-dependence estimators. Mach. Learn. 58(1), 5–24 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Guarascio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Folino, F., Folino, G., Guarascio, M., Pontieri, L. (2020). A Multi-view Ensemble of Deep Models for the Detection of Deviant Process Instances. In: Koprinska, I., et al. ECML PKDD 2020 Workshops. ECML PKDD 2020. Communications in Computer and Information Science, vol 1323. Springer, Cham. https://doi.org/10.1007/978-3-030-65965-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65965-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65964-6

  • Online ISBN: 978-3-030-65965-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics