Skip to main content

A Sweet Story of Metabolic Innovation in the Naked Mole-Rat

  • Chapter
  • First Online:
The Extraordinary Biology of the Naked Mole-Rat

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1319))

Abstract

The naked mole-rat’s (Heterocephalus glaber) social and subterranean lifestyle imposes several evolutionary pressures which have shaped its physiology. One example is low oxygen availability in a crowded burrow system which the naked mole-rat has adapted to via several mechanisms. Here we describe a metabolic rewiring which enables the naked mole-rat to switch substrates in glycolysis from glucose to fructose thereby circumventing feedback inhibition at phosphofructokinase (PFK1) to allow unrestrained glycolytic flux and ATP supply under hypoxia. Preferential shift to fructose metabolism occurs in other species and biological systems as a means to provide fuel, water or like in the naked mole-rat, protection in a low oxygen environment. We review fructose metabolism through an ecological lens and suggest that the metabolic adaptation to utilize fructose in the naked mole-rat may have evolved to simultaneously combat multiple challenges posed by its hostile environment.

figure a

Photo Credit: Gary R. Lewin

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andres-Hernando A, Li N, Cicerchi C, Inaba S, Chen W et al (2017) Protective role of fructokinase blockade in the pathogenesis of acute kidney injury in mice. Nat Commun 8, 14181

    Google Scholar 

  • Andres-Hernando A, Johnson RJ, Lanaspa MA (2019) Endogenous fructose production: What do we know and how relevant is it? Curr Opin Clin Nutr Metab Care 22:289–294

    Google Scholar 

  • Asnaghi V, Gerhardinger C, Hoehn T, Adeboje A, Lorenzi M (2003) A role for the polyol pathway in the early neuroretinal apoptosis and glial changes induced by diabetes in the rat. Diabetes 52:506–511

    Google Scholar 

  • Atsalis S (2008) A Natural History of the Brown Mouse Lemur. Pearson, Prentice Hall

    Google Scholar 

  • Bairlein F (2002) How to get fat: nutritional mechanisms of seasonal fat accumulation in migratory songbirds. Naturwissenschaften 89:1–10

    Google Scholar 

  • Benarroch EE (2014) Brain glucose transporters: implications for neurologic disease. Neurology 82:1374–1379

    Google Scholar 

  • Brett R (1991) The ecology of naked mole-rat colonies: burrowing, food and limiting factors. In: The Biology of the Naked Mole-Rat. Princeton University Press, Princeton, pp 137–184

    Google Scholar 

  • Bu P, Chen KY, Xiang K, Johnson C, Crown SB et al (2018) Aldolase B-mediated fructose metabolism drives metabolic reprogramming of Colon Cancer liver metastasis. Cell Metab 27:1249–1262.e4

    Google Scholar 

  • Buffenstein R, Craft W (2021) The idiosyncratic physiological traits of the naked mole-rat; a resilient animal model of aging, longevity, and healthspan. In: Buffenstein R, Park TJ, Holmes MM (eds) The Extraordinary Biology of the Naked Mole-Rat. Springer, New York, pp 221–254

    Google Scholar 

  • Buffenstein R, Yahav S (1991) Is the naked mole-rat Heterocephalus glaber an endothermic yet poikilothermic mammal? J Therm Biol 16:227–232

    Google Scholar 

  • Chen WL, Jin X, Wang M, Liu D, Luo Q et al (2020) GLUT5-mediated fructose utilization drives lung cancer growth by stimulating fatty acid synthesis and AMPK/mTORC1 signaling. JCI Insight 5:e131596

    Google Scholar 

  • Chotiwat C, Sharp C, Teff K, Harris RBS (2007) Feeding a high-fructose diet induces leptin resistance in rats. Appetite 49:284

    Google Scholar 

  • Costa Leite T, Da Silva D, Guimarães Coelho R, Zancan P, Sola-Penna M (2007) Lactate favours the dissociation of skeletal muscle 6-phosphofructo-1-kinase tetramers down-regulating the enzyme and muscle glycolysis. Biochem J 408(1):123–130

    Google Scholar 

  • Douard V, Ferraris RP (2008) Regulation of the fructose transporter GLUT5 in health and disease. Am J Physiol Endocrinol Metab 295:E227–E237

    Google Scholar 

  • Edrey YH, Park TJ, Kang H, Biney A, Buffenstein R (2011) Endocrine function and neurobiology of the longest-living rodent, the naked mole-rat. Exp Gerontol 46:116–123

    Google Scholar 

  • Fang X, Nevo E, Han L, Levanon EY, Zhao J et al (2014a) Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax. Nat Commun 5:3966

    Google Scholar 

  • Fang X, Seim I, Huang Z, Gerashchenko MV, Xiong Z et al (2014b) Adaptations to a subterranean environment and longevity revealed by the analysis of mole rat genomes. Cell Rep 8:1354–1364

    Google Scholar 

  • Farhat E, Devereaux MEM, Pamenter ME, Weber J-M (2020) Naked mole-rats suppress energy metabolism and modulate membrane cholesterol in chronic hypoxia. Am J Physiol Regul Integr Comp Physiol 319:R148–R155

    Google Scholar 

  • Fietz J, Ganzhorn JU (1999) Feeding ecology of the hibernating primate Cheirogaleus medius: how does it get so fat? Oecologia 121(2):157–164

    Google Scholar 

  • Geidl-Flueck B, Gerber PA (2017) Insights into the hexose liver metabolism—glucose versus fructose. Nutrients 9:1026 

    Google Scholar 

  • Gomes RS, Skroblin P, Munster AB, Tomlins H, Langley SR, Zampetaki A, Yin X, Wardle FC, Mayr M (2016) “Young at heart”: regenerative potential linked to immature cardiac phenotypes. J Mol Cell Cardiol 92:105–108

    Google Scholar 

  • Goncalves MD, Lu C, Tutnauer J, Hartman TE, Hwang SK et al (2019) High-fructose corn syrup enhances intestinal tumor growth in mice. Science 363:1345–1349

    Google Scholar 

  • Gonzalez JT, Fuchs CJ, Betts JA, van Loon LJC (2017) Glucose plus fructose ingestion for post-exercise recovery—greater than the sum of its parts? Nutrients 9:344

    Google Scholar 

  • Goodwin RF (1956) Division of the common mammals into two groups according to the concentration of fructose in the blood of the foetus. J Physiol 132(1):146–156

    Google Scholar 

  • Grimes KM, Voorhees A, Chiao YA, Han HC, Lindsey ML, Buffenstein R. Cardiac function of the naked mole-rat: ecophysiological responses to working underground (2014) Cardiac function of the naked mole-rat: ecophysiological responses to working underground. Am J Physiol Heart Circ Physiol 306:H730–H737

    Google Scholar 

  • Grimes KM, Barefield DY, Kumar M, McNamara JW, Weintraub ST, de Tombe PP, Sadayappan S, Buffenstein R (2017) The naked mole-rat exhibits an unusual cardiac myofilament protein profile providing new insights into heart function of this naturally subterranean rodent. Pflugers Arch 469(12):1603–1613

    Google Scholar 

  • Hadi F, Kulaberoglu Y, Lazarus KA, Bach K, Ugur R, Beattie P, Smith ESJ, Khaled WT (2020) Transformation of naked mole-rat cells. Nature 583:E1–E7

    Google Scholar 

  • Hannou SA, Haslam DE, McKeown NM, Herman MA (2018) Fructose metabolism and metabolic disease. J Clin Invest 128:545–555

    Google Scholar 

  • Heiden MGV, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 324:1029–1033

    Google Scholar 

  • Herman MA, Samuel VT (2016) The sweet path to metabolic demise: fructose and lipid synthesis. Trends Endocrinol Metab 27:719–730

    Google Scholar 

  • Herculano-Houzel S, Ribeiro P, Campos L, Valotta da Silva A, Torres LB, Catania KC, Kaas JH (2011) Updated neuronal scaling rules for the brains of Glires (rodents/lagomorphs). Brain Behav Evol 78:302–314

    Google Scholar 

  • Hertel AG, Steyaert SM, Zedrosser A, Mysterud A, Lodberg-Holm HK, Gelink HW, Kindberg J, Swenson JE (2016) Bears and berries: species-specific selective foraging on a patchily distributed food resource in a human-altered landscape. Behav Ecol Sociobiol 70:831–842

    Google Scholar 

  • Holmes MM, Goldman BD, Goldman SL, Seney ML, Forger NG (2009) Neuroendocrinology and sexual differentiation in eusocial mammals. Front Neuroendocrinol 30:519–533

    Google Scholar 

  • Hwang YC, Kaneko M, Bakr S, Liao H, Lu Y et al (2004) Central role for aldose reductase pathway in myocardial ischemic injury. FASEB J 18:1192–1199

    Google Scholar 

  • Hwang JJ, Jiang L, Hamza M, Dai F, Belfort-DeAguiar R, Cline G, Rothman DL, Mason G, Sherwin RS (2017) The human brain produces fructose from glucose. JCI Insight 2:e90508

    Google Scholar 

  • Jang C, Hui S, Lu W, Cowan AJ, Morscher RJ, Lee G, Liu W, Tesz GJ, Birnbaum MJ, Rabinowitz JD (2018) The small intestine converts dietary fructose into glucose and organic acids. Cell Metab 27(2):351–361.e3

    Google Scholar 

  • Jarvis JUM, Bennett NC (1991) Ecology and behavior of the family Bathyergidae. In: Sherman PW, Jarvis JUM, Alexander RD (eds) The Biology of the Naked Mole-Rat. Princeton University Press, Princeton, pp 66–97

    Google Scholar 

  • Jegatheesan P, De Bandt JP (2017) Fructose and NAFLD: The multifaceted aspects of fructose metabolism. Nutrients 9:230

    Google Scholar 

  • Jin X, Liang Y, Liu D, Luo Q, Cai L, Wu J, Jia L, Chen WL (2019) An essential role for GLUT5-mediated fructose utilization in exacerbating the malignancy of clear cell renal cell carcinoma. Cell Biol Toxicol 35:471–483

    Google Scholar 

  • Johansen K, Lykkeboe G, Weber RE, Maloiy GM (1976) Blood respiratory properties in the naked mole rat Heterocephalus glaber, a mammal of low body temperature. Respir Physiol 28:303–314

    Google Scholar 

  • Johnson RJ, Perez-Pozo SE, Sautin YY, Manitius J, Sanchez-Lozada LG et al (2009) Hypothesis: could excessive fructose intake and uric acid cause type 2 diabetes? Endocr Rev 30:96–116

    Google Scholar 

  • Johnson RJ, Stenvinkel P, Andrews P, Sánchez-Lozada LG, Nakagawa T et al (2020) Fructose metabolism as a common evolutionary pathway of survival associated with climate change, food shortage and droughts. J Intern Med 287:252–262

    Google Scholar 

  • Junk WJ (1985) Temporary fat storage, an adaptation of some fish species to the waterlevel fluctuations and related environmental changes of the Amazon river (vol 9). Amazoniana: Limnologia et Oecologia Regionalis Systematis Fluminis Amazonas, pp 315–351

    Google Scholar 

  • Kemp RG, Foe LG (1983) Allosteric regulatory properties of muscle phosphofructokinase. Mol Cell Biochem 57:147–154

    Google Scholar 

  • Khitan Z, Kim DH (2013) Fructose: a key factor in the development of metabolic syndrome and hypertension. J Nutr Metab 2013:682673

    Google Scholar 

  • Kim J, Song G, Wu G, Bazer FW (2012) Functional roles of fructose. Proc Natl Acad Sci 109:E1619–28

    Google Scholar 

  • Kirby AM, Fairman GD, Pamenter ME (2018) Atypical behavioural, metabolic and thermoregulatory responses to hypoxia in the naked mole rat (Heterocephalus glaber). J Zool 305:106–115

    Google Scholar 

  • Kramer B, Buffenstein R (2004) The pancreas of the naked mole-rat (Heterocephalus glaber): an ultrastructural and immunocytochemical study of the endocrine component of thermoneutral and cold acclimated animals. Gen Comp Endocrinol 139:206–214

    Google Scholar 

  • Kucharzewska P, Christianson HC, Belting M (2015) Global profiling of metabolic adaptation to hypoxic stress in human glioblastoma cells. PLoS One 10:e0116740

    Google Scholar 

  • Lalowski MM, Björk S, Finckenberg P, Soliymani R, Tarkia M et al (2018) Characterizing the key metabolic pathways of the neonatal mouse heart using a quantitative combinatorial omics approach. Front Physiol 9:365

    Google Scholar 

  • Lanaspa MA, Sanchez-Lozada LG, Choi YJ, Cicerchi C, Kanbay M et al (2012) Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver. J Biol Chem 287:40732–40744

    Google Scholar 

  • Lanaspa MA, Ishimoto T, Li N, Cicerchi C, Orlicky DJ et al (2013) Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome. Nat Commun 4:2434

    Google Scholar 

  • Lanaspa MA, Ishimoto T, Cicerchi C, Tamura Y, Roncal-Jimenez CA et al (2014) Endogenous fructose production and fructokinase activation mediate renal injury in diabetic nephropathy. J Am Soc Nephrol 25:2526–2538

    Google Scholar 

  • Larson J, Park TJT (2009) Extreme hypoxia tolerance of naked mole-rat brain. Neuroreport 20:1634–1637

    Google Scholar 

  • Liang L, Guo WH, Esquiliano DR, Asai M, Rodriguez S, Giraud J, Kushner JA, White MF, Lopez MF (2010) Insulin-like growth factor 2 and the insulin receptor, but not insulin, regulate fetal hepatic glycogen synthesis. Endocrinology 151(2):741–747

    Google Scholar 

  • Lui JC, Baron J (2013) Evidence that Igf2 down-regulation in postnatal tissues and up-regulation in malignancies is driven by transcription factor E2f3. Proc Natl Acad Sci 110(15):6181–6186

    Google Scholar 

  • Lunn JE (2016) Sucrose metabolism. In: Hetherington AM (ed) Encyclopedia of Life Science (ELS). John Wiley & Sons, Chichester, UK, pp 1–9

    Google Scholar 

  • Mäenpää PH, Raivio KO, Kekomäki MP (1968) Liver adenine nucleotides: Fructose-induced depletion and its effect on protein synthesis. Science 161(3847):1253–1254

    Google Scholar 

  • McGuinness OP, Cherrington AD (2003) Effects of fructose on hepatic glucose metabolism. Curr Opin Clin Nutr Metab Care 6:441–844

    Google Scholar 

  • McNab BK (1979) The influence of body size on the energetics and distribution of fossorial and burrowing mammals. Ecology 60:1010–1021

    Google Scholar 

  • Melkonian EA, Schury MP (2020) Biochemistry, anaerobic glycolysis. In: StatPearls. StatPearls Publishing

    Google Scholar 

  • Mirtschink P, Krishnan J, Grimm F, Sarre A, Hörl M et al (2015) HIF-driven SF3B1 induces KHK-C to enforce fructolysis and heart disease. Nature 522:444-449

    Google Scholar 

  • Mirtschink P, Jang C, Arany Z, Krek W (2018) Fructose metabolism, cardiometabolic risk, and the epidemic of coronary artery disease. Eur Heart J 39:2497–2505

    Google Scholar 

  • Nakazawa MS, Keith B, Simon MC (2016) Oxygen availability and metabolic adaptations. Nat Rev Cancer 16:663–673

    Google Scholar 

  • O’Riain MJ, Jarvis JUM, Faulkes CG (1996) A dispersive morph in the naked mole-rat. Nature 380:619–621

    Google Scholar 

  • Orr ME, Garbarino VR, Salinas A, Buffenstein R (2016) Extended postnatal brain development in the longest-lived rodent: prolonged maintenance of neotenous traits in the naked mole-rat brain. Front Neurosci 10:504

    Google Scholar 

  • Park TJ, Reznick J, Peterson BL, Blass G, Omerbašić D et al (2017) Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat. Science 356:307–311

    Google Scholar 

  • Park TJ, Smith ESJ, Reznick J, Bennett NC, Applegate DT, Larson J, Lewin GR (2021) African Naked mole-rats demonstrate extreme tolerance to hypoxia and hypercapnia. In: Buffenstein R, Park TJ, Holmes MM (eds) The Extraordinary Biology of the Naked Mole-Rat. Springer, New York, pp 255–269

    Google Scholar 

  • Pamenter ME, Dzal YA, Thompson WA, Milsom WK (2019) Do naked mole rats accumulate a metabolic acidosis or an oxygen debt in severe hypoxia? J Exp Biol 222:jeb191197

    Google Scholar 

  • Peterson BL, Park TJ, Larson J (2012) Adult naked mole-rat brain retains the NMDA receptor subunit GluN2D associated with hypoxia tolerance in neonatal mammals. Neurosci Lett 506:342–345

    Google Scholar 

  • Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA et al (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080

    Google Scholar 

  • Ratcliffe PJ (2013) Oxygen sensing and hypoxia signalling pathways in animals: the implications of physiology for cancer. J Physiol 591(8):2027–2042

    Google Scholar 

  • Riddle MR, Aspiras AC, Gaudenz K, Peuß R, Sung JY et al (2018) Insulin resistance in cavefish as an adaptation to a nutrient-limited environment. Nature 555:647–651

    Google Scholar 

  • Rigano KS, Gehring JL, Evans Hutzenbiler BD, Chen AV, Nelson OL, Vella CA, Robbins CT, Jansen HT (2017) Life in the fat lane: seasonal regulation of insulin sensitivity, food intake, and adipose biology in brown bears. J Comp Physiol B 187:649–676

    Google Scholar 

  • Sahm A, Bens M, Szafranski K, Holtze S, Groth M et al (2018) Long-lived rodents reveal signatures of positive selection in genes associated with lifespan. PLoS Genet 14:e1007272

    Google Scholar 

  • Schwab A, Siddiqui A, Vazakidou ME, Napoli F, Böttcher M et al (2018) Polyol pathway links glucose metabolism to the aggressiveness of cancer cells. Cancer Res 78:1604–1618

    Google Scholar 

  • Shapiro A, Mu W, Roncal C, Cheng KY, Johnson RJ, Scarpace PJ (2008) Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feeding. Am J Physiol – Regul Integr Comp Physiol 295:R1370-5

    Google Scholar 

  • Softic S, Meyer JG, Wang GX, Gupta MK, Batista TM et al (2019) Dietary sugars alter hepatic fatty acid oxidation via transcriptional and post-translational modifications of mitochondrial proteins. Cell Metab 30(4):735–753.e4

    Google Scholar 

  • Stenvinkel P, Jani AH, Johnson RJ (2013) Hibernating bears (Ursidae): metabolic magicians of definite interest for the nephrologist. Kidney Int 83:207–212

    Google Scholar 

  • Trindade CEP, Barreiros RC, Kurokawa C, Bossolan G (2011) Fructose in fetal cord blood and its relationship with maternal and 48-hour-newborn blood concentrations. Early Hum Dev 87:193–197

    Google Scholar 

  • Urison NT, Buffenstein R (1994) Kidney concentrating ability of a subterranean xeric rodent, the naked mole-rat (Heterocephalus glaber). J Comp Physiol B 163:676–681

    Google Scholar 

  • Van Den Berghe G, Bronfman M, Vanneste R, Hers HG (1977) The mechanism of adenosine triphosphate depletion in the liver after a load of fructose. A kinetic study of liver adenylate deaminase. Biochem J 162(3):601–609

    Google Scholar 

  • Weng Y, Fan X, Bai Y, Wang S, Huang H, Yang H, Zhu J, Zhang F (2018) SLC2A5 promotes lung adenocarcinoma cell growth and metastasis by enhancing fructose utilization. Cell Death Discov 4:38

    Google Scholar 

  • Yahav S, Buffenstein R (1991) Huddling behavior facilitates homeothermy in the naked mole rat Heterocephalus glaber. Physiol Zool 64:871–884

    Google Scholar 

  • Yu C, Li Y, Holmes A, Szafranski K, Faulkes CG, Coen CW, Buffenstein R, Platzer M, de Magalhães JP, Church GM (2011) RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice. PLoS One 6(11):e26729

    Google Scholar 

  • Zamora-León SP, Golde DW, Concha II, Rivas CI, Delgado-López F, Baselga J, Nualart F, Vera JC (1996) Expression of the fructose transporter GLUT5 in human breast cancer. Proc Natl Acad Sci U S A 93:1847–1852

    Google Scholar 

  • Zhou X, Dou Q, Fan G, Zhang Q, Sanderford M et al (2020) Beaver and naked mole rat genomes reveal common paths to longevity. Cell Rep 32:107949

    Google Scholar 

  • Zions M, Meehan EF, Kress ME, Thevalingam D, Jenkins EC, Kaila K, Puskarjov M, McCloskey DP (2020) Nest carbon dioxide masks GABA-dependent seizure susceptibility in the naked mole-rat. Curr Biol 30:2068–2077.e4

    Google Scholar 

Download references

Acknowledgements

The work in the authors laboratories has been supported by the following agencies: ERC advanced grants to GRL (AdG 789128 and AdG 294678), and a National Science Foundation grant to TJP (1655494).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane Reznick .

Editor information

Editors and Affiliations

Glossary

Glycolysis:

A metabolic process that occurs in almost all living cells in which glucose is converted in a series of steps to pyruvic acid and during which energy is released in the form of ATP.

Fructose:

A very sweet simple sugar (monosaccharide), C6H12O6 occurring in many fruits and in honey.

Sucrose:

A nonreducing disaccharide from sugar cane. Sucrose (C12H22O11) is formed by a condensation reaction between fructose and glucose and can be broken down by acid hydrolysis or incubation with the enzyme sucrase.

Insulin resistance:

Insulin resistance is a state or condition in which tissues in the body have a lowered level of response to insulin, a hormone secreted by the pancreas that helps to regulate the level of glucose in the body.

Hypoxia:

Lower than normal levels of oxygen in inspired gases, arterial blood, or tissues.

Anoxia:

A condition characterized by an absence of oxygen supply to an organ or a tissue.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reznick, J., Park, T.J., Lewin, G.R. (2021). A Sweet Story of Metabolic Innovation in the Naked Mole-Rat. In: Buffenstein, R., Park, T.J., Holmes, M.M. (eds) The Extraordinary Biology of the Naked Mole-Rat. Advances in Experimental Medicine and Biology, vol 1319. Springer, Cham. https://doi.org/10.1007/978-3-030-65943-1_10

Download citation

Publish with us

Policies and ethics