Skip to main content

Therapy Planning with SPECT/CT in Radioembolization of Liver Tumours

  • Chapter
  • First Online:
Clinical Applications of SPECT-CT

Abstract

Radioembolisation (RE) with yttrium-90 (90Y) microspheres, also named selective internal radiation therapy (SIRT), is a promising catheter-based liver-directed modality for patients with primary and metastatic liver cancer. RE provides several advantages over traditional treatment methods including its low toxicity profile (Campbell et al., Phys Med Biol 45:1023–1033, 2000; Salem and Thurston, J Vasc Interv Radiol 17:1251–1278, 2006). Its rationale arises from the anatomic and physiological aspects of hepatic tumours being exploited for the delivery of therapeutic agents. The prominent feature is the dual blood supply of liver tissue from the hepatic artery and the portal vein. Approximately 60–80% of hepatic blood is derived from the gastrointestinal (GI) tract via the portal vein and 20–40% from the systemic circulation via the hepatic artery (Lien and Ackerman, Surgery 68:334–340, 1970). Observations on vascular supply to hepatic malignancies have demonstrated that metastatic hepatic tumours measuring >3 mm derive 80–100% of their blood supply from the arterial rather than the portal hepatic circulation (Lien and Ackerman, Surgery 68:334–340, 1970). 90Y is a pure β-emitter, produced by neutron bombardment of 89Y in a reactor, with a limited tissue penetration (mean 2.5 mm, max 11 mm) and a short half-life of 64.2 h, making it an ideal transarterial liver-directed agent (Ahmadzadehfar et al., Semin Nucl Med 40:105–121, 2010). Two 90Y microsphere products are commercially available: TheraSphere® (glass microspheres) and Sir-sphere® (resin microspheres). There are some distinct differences in properties between the two products discussed in detail elsewhere (Ahmadzadehfar et al., Semin Nucl Med 40:105–121, 2010). In the selection process of patients referred for RE, several aspects should be considered. Patients selected for RE should have (1) unresectable hepatic primary or metastatic cancer, (2) liver-dominant disease, (3) a life expectancy of at least 3 months and (4) an ECOG performance score of ≤2 as well as a preserved liver function (Kennedy et al., Int J Radiat Oncol Biol Phys 68:13–23, 2007). Overall, the incidence of complications of RE of the liver malignancies for appropriately selected patients and accurately targeted delivery is very low (Murthy et al., Radiographics 25(Suppl 1):S41–S55, 2005). Serious complications have been reported when microspheres were inadvertently deposited in excessive amounts in organs other than liver or when the liver received more radiation than its tolerance, which is called radioembolisation-induced liver disease (REILD) (Riaz et al., J Vasc Interv Radiol 20:1121–1130, 2009). Radiation and diminished blood supply due to embolisation by the spheres and subsequent hypoxia may result in ulceration and even perforation of the stomach and duodenum (Riaz et al., J Vasc Interv Radiol 20:1121–1130, 2009; Yip et al., J Gastroenterol Hepatol 19:347–349, 2004). 90Y-induced ulceration of the stomach or duodenum can be resistant to medical therapy and surgery may be required (Carretero et al., Am J Gastroenterol 102:1216–1220, 2007). Reported complications include gastrointestinal ulceration/bleeding, gastritis/duodenitis, cholecystitis, pancreatitis, radiation pneumonitis and hepatic decompensation (Salem and Thurston, J Vasc Interv Radiol 17:1251–1278, 2006; Kennedy et al., Int J Radiat Oncol Biol Phys 68:13–23, 2007; Riaz et al., J Vasc Interv Radiol 20:1121–1130, 2009; Yip et al., J Gastroenterol Hepatol 19:347–349, 2004; Carretero et al., Am J Gastroenterol 102:1216–1220, 2007; Leung et al., Int J Radiat Oncol Biol Phys 33:919–924, 1995; Murthy et al., J Vasc Interv Radiol 18:553–562, 2007; Salem et al., Am J Clin Oncol 31:431–438, 2008; Atassi et al., J Vasc Interv Radiol 19:691–697, 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Campbell AM, Bailey IH, Burton MA. Analysis of the distribution of intra-arterial microspheres in human liver following hepatic yttrium-90 microsphere therapy. Phys Med Biol. 2000;45:1023–33.

    Article  CAS  Google Scholar 

  2. Salem R, Thurston KG. Radioembolization with 90Yttrium microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part 1: technical and methodologic considerations. J Vasc Interv Radiol. 2006;17:1251–78.

    Article  Google Scholar 

  3. Lien WM, Ackerman NB. The blood supply of experimental liver metastases. II. A microcirculatory study of the normal and tumor vessels of the liver with the use of perfused silicone rubber. Surgery. 1970;68:334–40.

    CAS  PubMed  Google Scholar 

  4. Ahmadzadehfar H, Biersack HJ, Ezziddin S. Radioembolization of liver tumors with yttrium-90 microspheres. Semin Nucl Med. 2010;40:105–21. https://doi.org/10.1053/j.semnuclmed.2009.11.001. S0001-2998(09)00105-6 [pii].

    Article  PubMed  Google Scholar 

  5. Kennedy A, Nag S, Salem R, Murthy R, McEwan AJ, Nutting C, et al. Recommendations for radioembolization of hepatic malignancies using yttrium-90 microsphere brachytherapy: a consensus panel report from the radioembolization brachytherapy oncology consortium. Int J Radiat Oncol Biol Phys. 2007;68:13–23. https://doi.org/10.1016/j.ijrobp.2006.11.060. S0360-3016(07)00097-1 [pii].

    Article  PubMed  Google Scholar 

  6. Murthy R, Nunez R, Szklaruk J, Erwin W, Madoff DC, Gupta S, et al. Yttrium-90 microsphere therapy for hepatic malignancy: devices, indications, technical considerations, and potential complications. Radiographics. 2005;25(Suppl 1):S41–55. https://doi.org/10.1148/rg.25si055515. 25/suppl_1/S41 [pii].

    Article  PubMed  Google Scholar 

  7. Riaz A, Lewandowski RJ, Kulik LM, Mulcahy MF, Sato KT, Ryu RK, et al. Complications following radioembolization with yttrium-90 microspheres: a comprehensive literature review. J Vasc Interv Radiol. 2009;20:1121–30. https://doi.org/10.1016/j.jvir.2009.05.030, quiz 31.

    Article  PubMed  Google Scholar 

  8. Yip D, Allen R, Ashton C, Jain S. Radiation-induced ulceration of the stomach secondary to hepatic embolization with radioactive yttrium microspheres in the treatment of metastatic colon cancer. J Gastroenterol Hepatol. 2004;19:347–9. 3322 [pii].

    Article  Google Scholar 

  9. Carretero C, Munoz-Navas M, Betes M, Angos R, Subtil JC, Fernandez-Urien I, et al. Gastroduodenal injury after radioembolization of hepatic tumors. Am J Gastroenterol. 2007;102:1216–20. https://doi.org/10.1111/j.1572-0241.2007.01172.x. AJG1172 [pii].

    Article  PubMed  Google Scholar 

  10. Leung TW, Lau WY, Ho SK, Ward SC, Chow JH, Chan MS, et al. Radiation pneumonitis after selective internal radiation treatment with intraarterial 90yttrium-microspheres for inoperable hepatic tumors. Int J Radiat Oncol Biol Phys. 1995;33:919–24. 0360301695000393 [pii].

    Article  CAS  Google Scholar 

  11. Murthy R, Brown DB, Salem R, Meranze SG, Coldwell DM, Krishnan S, et al. Gastrointestinal complications associated with hepatic arterial yttrium-90 microsphere therapy. J Vasc Interv Radiol. 2007;18:553–62. https://doi.org/10.1016/j.jvir.2007.02.002.

    Article  PubMed  Google Scholar 

  12. Salem R, Parikh P, Atassi B, Lewandowski RJ, Ryu RK, Sato KT, et al. Incidence of radiation pneumonitis after hepatic intra-arterial radiotherapy with yttrium-90 microspheres assuming uniform lung distribution. Am J Clin Oncol. 2008;31:431–8. https://doi.org/10.1097/COC.0b013e318168ef65.

    Article  PubMed  Google Scholar 

  13. Atassi B, Bangash AK, Lewandowski RJ, Ibrahim S, Kulik L, Mulcahy MF, et al. Biliary sequelae following radioembolization with Yttrium-90 microspheres. J Vasc Interv Radiol. 2008;19:691–7. https://doi.org/10.1016/j.jvir.2008.01.003. S1051-0443(08)00092-4 [pii].

    Article  PubMed  Google Scholar 

  14. Covey AM, Brody LA, Maluccio MA, Getrajdman GI, Brown KT. Variant hepatic arterial anatomy revisited: digital subtraction angiography performed in 600 patients. Radiology. 2002;224:542–7.

    Article  Google Scholar 

  15. Ahmadzadehfar H, Sabet A, Biermann K, Muckle M, Brockmann H, Kuhl C, et al. The significance of 99mTc-MAA SPECT/CT liver perfusion imaging in treatment planning for 90Y-microsphere selective internal radiation treatment. J Nucl Med. 2010;51:1206–12. https://doi.org/10.2967/jnumed.109.074559.

    Article  PubMed  Google Scholar 

  16. Lenoir L, Edeline J, Rolland Y, Pracht M, Raoul JL, Ardisson V, et al. Usefulness and pitfalls of MAA SPECT/CT in identifying digestive extrahepatic uptake when planning liver radioembolization. Eur J Nucl Med Mol Imaging. 2012;39:872–80. https://doi.org/10.1007/s00259-011-2033-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hamami ME, Poeppel TD, Muller S, Heusner T, Bockisch A, Hilgard P, et al. SPECT/CT with 99mTc-MAA in radioembolization with 90Y microspheres in patients with hepatocellular cancer. J Nucl Med. 2009;50:688–92. https://doi.org/10.2967/jnumed.108.058347. jnumed.108.058347 [pii].

    Article  CAS  PubMed  Google Scholar 

  18. Denecke T, Ruhl R, Hildebrandt B, Stelter L, Grieser C, Stiepani H, et al. Planning transarterial radioembolization of colorectal liver metastases with Yttrium 90 microspheres: evaluation of a sequential diagnostic approach using radiologic and nuclear medicine imaging techniques. Eur Radiol. 2008;18:892–902. https://doi.org/10.1007/s00330-007-0836-2.

    Article  PubMed  Google Scholar 

  19. Dudeck O, Wilhelmsen S, Ulrich G, Lowenthal D, Pech M, Amthauer H, et al. Effectiveness of repeat angiographic assessment in patients designated for radioembolization using yttrium-90 microspheres with initial extrahepatic accumulation of technitium-99m macroaggregated albumin: a single center’s experience. Cardiovasc Intervent Radiol. 2012;35:1083–93. https://doi.org/10.1007/s00270-011-0252-5.

    Article  PubMed  Google Scholar 

  20. Buck AK, Nekolla S, Ziegler S, Beer A, Krause BJ, Herrmann K, et al. SPECT/CT. J Nucl Med. 2008;49:1305–19. https://doi.org/10.2967/jnumed.107.050195. jnumed.107.050195 [pii].

    Article  PubMed  Google Scholar 

  21. Sabet A, Ahmadzadehfar H, Muckle M, Haslerud T, Wilhelm K, Biersack HJ, et al. Significance of oral administration of sodium perchlorate in planning liver-directed radioembolization. J Nucl Med. 2011;52:1063–7.

    Article  Google Scholar 

  22. Uliel L, Royal HD, Darcy MD, Zuckerman DA, Sharma A, Saad NE. From the angio suite to the gamma-camera: vascular mapping and 99mTc-MAA hepatic perfusion imaging before liver radioembolization – a comprehensive pictorial review. J Nucl Med. 2012;53:1736–47. https://doi.org/10.2967/jnumed.112.105361.

    Article  CAS  PubMed  Google Scholar 

  23. Lau WY, Ho S, Leung TW, Chan M, Ho R, Johnson PJ, et al. Selective internal radiation therapy for nonresectable hepatocellular carcinoma with intraarterial infusion of 90yttrium microspheres. Int J Radiat Oncol Biol Phys. 1998;40:583–92. S0360301697008183 [pii].

    Article  CAS  Google Scholar 

  24. Van de Wiele C, Stellamans K, Brugman E, Mees G, De Spiegeleer B, D’Asseler Y, et al. Quantitative p retreatment VOI analysis of liver metastases. (99m)Tc-MAA SPECT/CT and FDG PET/CT in relation with treatment response to SIRT. Nuklearmedizin. 2013;52:21–7.

    Article  Google Scholar 

  25. Kao YH, Tan EH, Teo TK, Ng CE, Goh SW. Imaging discordance between hepatic angiography versus Tc-99m-MAA SPECT/CT: a case series, technical discussion and clinical implications. Ann Nucl Med. 2011;25:669–76. https://doi.org/10.1007/s12149-011-0516-9.

    Article  PubMed  Google Scholar 

  26. Naymagon S, Warner RR, Patel K, Harpaz N, Machac J, Weintraub JL, et al. Gastroduodenal ulceration associated with radioembolization for the treatment of hepatic tumors: an institutional experience and review of the literature. Dig Dis Sci. 2010;55:2450–8.

    Article  Google Scholar 

  27. Lauenstein TC, Heusner TA, Hamami M, Ertle J, Schlaak JF, Gerken G, et al. Radioembolization of hepatic tumors: flow redistribution after the occlusion of intrahepatic arteries. RöFo. 2011;183:1058–64. https://doi.org/10.1055/s-0031-1281767.

    Article  CAS  PubMed  Google Scholar 

  28. McWilliams JP, Kee ST, Loh CT, Lee EW, Liu DM. Prophylactic embolization of the cystic artery before radioembolization: feasibility, safety, and outcomes. Cardiovasc Intervent Radiol. 2011;34:786. https://doi.org/10.1007/s00270-010-0021-x.

    Article  PubMed  Google Scholar 

  29. Chernyak I, Bester L, Freund J, Richardson M. Anterior abdominal wall uptake in intrahepatic arterial brachytherapy with yttrium-90 sir spheres for hepatic malignancy. Clin Nucl Med. 2008;33:677–80. https://doi.org/10.1097/RLU.0b013e318184b44f. 00003072-200810000-00004 [pii].

    Article  PubMed  Google Scholar 

  30. Kao YH, Tan AE, Khoo LS, Lo RH, Chow PK, Goh AS. Hepatic falciform ligament Tc-99m-macroaggregated albumin activity on SPECT/CT prior to Yttrium-90 microsphere radioembolization: prophylactic measures to prevent non-target microsphere localization via patent hepatic falciform arteries. Ann Nucl Med. 2011;25:365. https://doi.org/10.1007/s12149-010-0464-9.

    Article  PubMed  Google Scholar 

  31. Ahmadzadehfar H, Mohlenbruch M, Sabet A, Meyer C, Muckle M, Haslerud T, et al. Is prophylactic embolization of the hepatic falciform artery needed before radioembolization in patients with 99mTc-MAA accumulation in the anterior abdominal wall? Eur J Nucl Med Mol Imaging. 2011;38:1477–84. https://doi.org/10.1007/s00259-011-1807-z.

    Article  PubMed  Google Scholar 

  32. Barentsz MW, Vente MA, Lam MG, Smits ML, Nijsen JF, Seinstra BA, et al. Technical solutions to ensure safe yttrium-90 radioembolization in patients with initial extrahepatic deposition of (99m) technetium-albumin macroaggregates. Cardiovasc Intervent Radiol. 2011;34:1074–9. https://doi.org/10.1007/s00270-010-0088-4.

    Article  CAS  PubMed  Google Scholar 

  33. Burgmans MC, Too CW, Kao YH, Goh AS, Chow PK, Tan BS, et al. Computed tomography hepatic arteriography has a hepatic falciform artery detection rate that is much higher than that of digital subtraction angiography and 99mTc-MAA SPECT/CT: implications for planning 90Y radioembolization? Eur J Radiol. 2012;81:3979–84. https://doi.org/10.1016/j.ejrad.2012.08.007.

    Article  CAS  PubMed  Google Scholar 

  34. Baba Y, Miyazono N, Ueno K, Kanetsuki I, Nishi H, Inoue H, et al. Hepatic falciform artery. Angiographic findings in 25 patients. Acta Radiol. 2000;41:329–33.

    Article  CAS  Google Scholar 

  35. Garin E, Lenoir L, Rolland Y, Edeline J, Mesbah H, Laffont S, Porée P, Clément B, Raoul JL, Boucher E. Dosimetry based on 99mTc-macroaggregated albumin SPECT/CT accurately predicts tumor response and survival in hepatocellular carcinoma patients treated with 90Y-loaded glass microspheres: preliminary results. J Nucl Med. 2012;53(2):255–63. https://doi.org/10.2967/jnumed.111.094235.

    Article  CAS  PubMed  Google Scholar 

  36. Ahmadzadehfar H, et al. Is prophylactic embolization of the hepatic falciform artery needed before radioembolization in patients with 99mTc-MAA accumulation in the anterior abdominal wall? Eur J Nucl Med Mol Imaging. 2011;38(8):1477–84.

    Article  Google Scholar 

  37. Leong QM, Lai HK, Lo RG, Teo TK, Goh A, Chow PK. Radiation dermatitis following radioembolization for hepatocellular carcinoma: a case for prophylactic embolization of a patent falciform artery. J Vasc Interv Radiol. 2009;20:833. https://doi.org/10.1016/j.jvir.2009.03.011. S1051-0443(09)00220-6 [pii].

    Article  PubMed  Google Scholar 

  38. Ahmadzadehfar H, Muckle M, Sabet A, Wilhelm K, Kuhl C, Biermann K, et al. The significance of bremsstrahlung SPECT/CT after yttrium-90 radioembolization treatment in the prediction of extrahepatic side effects. Eur J Nucl Med Mol Imaging. 2012;39:309. https://doi.org/10.1007/s00259-011-1940-8.

    Article  CAS  PubMed  Google Scholar 

  39. Flamen P, Vanderlinden B, Delatte P, Ghanem G, Ameye L, Van Den Eynde M, et al. Multimodality imaging can predict the metabolic response of unresectable colorectal liver metastases to radioembolization therapy with Yttrium-90 labeled resin microspheres. Phys Med Biol. 2008;53:6591–603. https://doi.org/10.1088/0031-9155/53/22/019. S0031-9155(08)89144-0 [pii].

    Article  PubMed  Google Scholar 

  40. Garin E, Lenoir L, Rolland Y, Laffont S, Pracht M, Mesbah H, et al. Effectiveness of quantitative MAA SPECT/CT for the definition of vascularized hepatic volume and dosimetric approach: phantom validation and clinical preliminary results in patients with complex hepatic vascularization treated with yttrium-90-labeled microspheres. Nucl Med Commun. 2011;32:1245–55. https://doi.org/10.1097/MNM.0b013e32834a716b.

    Article  PubMed  Google Scholar 

  41. Garin E, Lenoir L, Edeline J, Laffont S, Mesbah H, Poree P, et al. Boosted selective internal radiation therapy with Y-loaded glass microspheres (B-SIRT) for hepatocellular carcinoma patients: a new personalized promising concept. Eur J Nucl Med Mol Imaging. 2013;40:1057. https://doi.org/10.1007/s00259-013-2395-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bilbao JI, Garrastachu P, Herraiz MJ, Rodriguez M, Inarrairaegui M, Rodriguez J, et al. Safety and efficacy assessment of flow redistribution by occlusion of intrahepatic vessels prior to radioembolization in the treatment of liver tumors. Cardiovasc Intervent Radiol. 2010;33:523–31. https://doi.org/10.1007/s00270-009-9717-1.

    Article  PubMed  Google Scholar 

  43. Karunanithy N, Gordon F, Hodolic M, Al-Nahhas A, Wasan HS, Habib N, et al. Embolization of hepatic arterial branches to simplify hepatic blood flow before yttrium 90 radioembolization: a useful technique in the presence of challenging anatomy. Cardiovasc Intervent Radiol. 2011;34:287–94. https://doi.org/10.1007/s00270-010-9951-6.

    Article  PubMed  Google Scholar 

  44. Pohlen U, Rieger H, Mansmann U, Berger G, Buhr HJ. Hepatic arterial infusion (HAI). Comparison of 5-fluorouracil, folinic acid, interferon alpha-2b and degradable starch microspheres versus 5-fluorouracil and folinic acid in patients with non-resectable colorectal liver metastases. Anticancer Res. 2006;26:3957–64.

    CAS  PubMed  Google Scholar 

  45. Murata T, Akagi K, Imamura M, Nasu R, Kimura H, Nagata K, et al. Studies on hyperthermia combined with arterial therapeutic blockade for treatment of tumors: (Part III) effectiveness of hyperthermia combined with arterial chemoembolization using degradable starch microspheres on advanced liver cancer. Oncol Rep. 1998;5:709–12.

    CAS  PubMed  Google Scholar 

  46. Wang J, Murata S, Kumazaki T. Liver microcirculation after hepatic artery embolization with degradable starch microspheres in vivo. World J Gastroenterol. 2006;12:4214–8.

    Article  CAS  Google Scholar 

  47. Ahmadzadehfar H, Pieper C, Ezziddin S, Wilhelm K, Schild HH, Meyer C. Feasibility of temporary protective embolization of normal liver tissue using degradable starch microspheres during radioembolization of liver metastases. In: 26th Annual Congress of the EANM, Lyon; 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hojjat Ahmadzadehfar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmadzadehfar, H., Hoffmann, M. (2022). Therapy Planning with SPECT/CT in Radioembolization of Liver Tumours. In: Ahmadzadehfar, H., Biersack, HJ., Herrmann, K. (eds) Clinical Applications of SPECT-CT. Springer, Cham. https://doi.org/10.1007/978-3-030-65850-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65850-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65849-6

  • Online ISBN: 978-3-030-65850-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics