Skip to main content

Dairy Cow Rumination Detection: A Deep Learning Approach

  • Conference paper
  • First Online:
Distributed Computing for Emerging Smart Networks (DiCES-N 2020)

Abstract

Cattle activity is an essential index for monitoring health and welfare of the ruminants. Thus, changes in the livestock behavior are a critical indicator for early detection and prevention of several diseases. Rumination behavior is a significant variable for tracking the development and yield of animal husbandry. Therefore, various monitoring methods and measurement equipment have been used to assess cattle behavior. However, these modern attached devices are invasive, stressful and uncomfortable for the cattle and can influence negatively the welfare and diurnal behavior of the animal. Multiple research efforts addressed the problem of rumination detection by adopting new methods by relying on visual features. However, they only use few postures of the dairy cow to recognize the rumination or feeding behavior. In this study, we introduce an innovative monitoring method using Convolution Neural Network (CNN)-based deep learning models. The classification process is conducted under two main labels: ruminating and other, using all cow postures captured by the monitoring camera. Our proposed system is simple and easy-to-use which is able to capture long-term dynamics using a compacted representation of a video in a single 2D image. This method proved efficiency in recognizing the rumination behavior with 95%, 98% and 98% of average accuracy, recall and precision, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.rumiwatch.ch/.

  2. 2.

    https://www.crunchbase.com/organization/lifeye.

  3. 3.

    https://www.moome.io.

References

  1. Bouwman, A., Van der Hoek, K., Eickhout, B., Soenario, I.: Exploring changes in world ruminant production systems. Agric. Syst. 84(2), 121–153 (2005)

    Article  Google Scholar 

  2. Thomsen, D.K., et al.: Negative thoughts and health: associations among rumination, immunity, and health care utilization in a young and elderly sample. Psychosom. Med. 66(3), 363–371 (2004)

    Google Scholar 

  3. Stangaferro, M., Wijma, R., Caixeta, L., Al-Abri, M., Giordano, J.: Use of rumination and activity monitoring for the identification of dairy cows with health disorders: Part iii. metritis. J. Dairy Sci. 99(9), 7422–7433 (2016)

    Article  Google Scholar 

  4. Vandevala, T., Pavey, L., Chelidoni, O., Chang, N.-F., Creagh-Brown, B., Cox, A.: Psychological rumination and recovery from work in intensive care professionals: associations with stress, burnout, depression and health. J. Intensive Care 5(1), 16 (2017)

    Article  Google Scholar 

  5. Nolen-Hoeksema, S.: The role of rumination in depressive disorders and mixed anxiety/depressive symptoms. J. Abnorm. Psychol. 109(3), 504 (2000)

    Article  Google Scholar 

  6. Grinter, L., Campler, M., Costa, J.: Validation of a behavior-monitoring collar’s precision and accuracy to measure rumination, feeding, and resting time of lactating dairy cows. J. Dairy Sci. 102(4), 3487–3494 (2019)

    Article  Google Scholar 

  7. Suzuki, T., et al.: Effect of fiber content of roughage on energy cost of eating and rumination in Holstein cows. Anim. Feed Sci. Technol. 196, 42–49 (2014)

    Article  Google Scholar 

  8. Beauchemin, K.A.: Ingestion and mastication of feed by dairy cattle. Vet. Clin. N. Am. Food Anim. Pract. 7(2), 439–463 (1991)

    Article  Google Scholar 

  9. Reith, S., Brandt, H., Hoy, S.: Simultaneous analysis of activity and rumination time, based on collar-mounted sensor technology, of dairy cows over the peri-estrus period. Livestock Sci. 170, 219–227 (2014)

    Article  Google Scholar 

  10. Paudyal, S., Maunsell, F., Richeson, J., Risco, C., Donovan, A., Pinedo, P.: Peripartal rumination dynamics and health status in cows calving in hot and cool seasons. J. Dairy Sci. 99(11), 9057–9068 (2016)

    Article  Google Scholar 

  11. Calamari, L., Soriani, N., Panella, G., Petrera, F., Minuti, A., Trevisi, E.: Rumination time around calving: an early signal to detect cows at greater risk of disease. J. Dairy Sci. 97(6), 3635–3647 (2014)

    Google Scholar 

  12. Krause, M., Beauchemin, K., Rode, L., Farr, B., Nørgaard, P.: Fibrolytic enzyme treatment of barley grain and source of forage in high-grain diets fed to growing cattle. J. Anim. Sci. 76(11), 2912–2920 (1998)

    Article  Google Scholar 

  13. Lopreiato, V., et al.: Post-weaning rumen fermentation of Simmental calves in response to weaning age and relationship with rumination time measured by the Hr-tag rumination-monitoring system. Livestock Sci. 232, 103918 (2020)

    Article  Google Scholar 

  14. Shen, W., Zhang, A., Zhang, Y., Wei, X., Sun, J.: Rumination recognition method of dairy cows based on the change of noseband pressure. Inf. Process. Agric. 2214–3173 (2020). https://doi.org/10.1016/j.inpa.2020.01.005

  15. Mao, Y., He, D., Song, H.: Automatic detection of ruminant cows’ mouth area during rumination based on machine vision and video analysis technology. Int. J. Agric. Biol. Eng. 12(1), 186–191 (2019)

    Google Scholar 

  16. Shen, W., Cheng, F., Zhang, Y., Wei, X., Fu, Q., Zhang, Y.: Automatic recognition of ingestive-related behaviors of dairy cows based on triaxial acceleration. Inf. Process. Agric. 7, 427–443 (2020)

    Google Scholar 

  17. Jabbar, R., Shinoy, M., Kharbeche, M., Al-Khalifa, K., Krichen, M., Barkaoui, K.: Driver drowsiness detection model using convolutional neural networks techniques for android application. In: 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), pp. 237–242. IEEE (2020)

    Google Scholar 

  18. Alhazbi, S., Said, A.B., Al-Maadid, A.: Using deep learning to predict stock movements direction in emerging markets: the case of Qatar stock exchange. In: 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), pp. 440–444. IEEE (2020)

    Google Scholar 

  19. Said, A.B., Mohamed, A., Elfouly, T., Abualsaud, K., Harras, K.: Deeplearning and low rank dictionary model for mHealth data classification. In: 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC), pp. 358–363. IEEE (2018)

    Google Scholar 

  20. Abdelhedi, M., et al.: Prediction of uniaxial compressive strength of carbonate rocks and cement mortar using artificial neural network and multiple linear regressions. Acta Geodynamica et Geromaterialia 17(3), 367–378 (2020)

    Article  Google Scholar 

  21. Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster R-CNN for object detection in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3339–3348 (2018)

    Google Scholar 

  22. Zhang, H., Liu, D., Xiong, Z.: Two-stream action recognition-oriented video super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 8799–8808 (2019)

    Google Scholar 

  23. Bilen, H., Fernando, B., Gavves, E., Vedaldi, A., Gould, S.: Dynamic image networks for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3034–3042 (2016)

    Google Scholar 

  24. Milone, D.H., Galli, J.R., Cangiano, C.A., Rufiner, H.L., Laca, E.A.: Automatic recognition of ingestive sounds of cattle based on hidden Markov models. Comput. Electron. Agric. 87, 51–55 (2012)

    Article  Google Scholar 

  25. Chelotti, J.O., Vanrell, S.R., Galli, J.R., Giovanini, L.L., Rufiner, H.L.: A pattern recognition approach for detecting and classifying jaw movements in grazing cattle. Comput. Electron. Agric. 145, 83–91 (2018)

    Article  Google Scholar 

  26. Clapham, W.M., Fedders, J.M., Beeman, K., Neel, J.P.: Acoustic monitoring system to quantify ingestive behavior of free-grazing cattle. Comput. Electron. Agric. 76(1), 96–104 (2011)

    Article  Google Scholar 

  27. Chelotti, J.O., et al.: An online method for estimating grazing and rumination bouts using acoustic signals in grazing cattle. Comput. Electron. Agric. 173, 105443 (2020)

    Article  Google Scholar 

  28. Rau, L.M., Chelotti, J.O., Vanrell, S.R., Giovanini, L.L.: Developments on real-time monitoring of grazing cattle feeding behavior using sound. In: 2020 IEEE International Conference on Industrial Technology (ICIT), pp. 771–776. IEEE (2020)

    Google Scholar 

  29. Zehner, N., Umstätter, C., Niederhauser, J.J., Schick, M.: System specification and validation of a noseband pressure sensor for measurement of ruminating and eating behavior in stable-fed cows. Comput. Electron. Agric. 136, 31–41 (2017)

    Article  Google Scholar 

  30. Martiskainen, P., Järvinen, M., Skön, J.-P., Tiirikainen, J., Kolehmainen, M., Mononen, J.: Cow behaviour pattern recognition using a three-dimensional accelerometer and support vector machines. Appl. Anim. Behav. Sci. 119(1–2), 32–38 (2009)

    Article  Google Scholar 

  31. Rayas-Amor, A.A., et al.: Triaxial accelerometers for recording grazing and ruminating time in dairy cows: an alternative to visual observations. J. Vet. Behav. 20, 102–108 (2017)

    Article  Google Scholar 

  32. Hamilton, A.W., et al.: Identification of the rumination in cattle using support vector machines with motion-sensitive bolus sensors. Sensors 19(5), 1165 (2019)

    Article  Google Scholar 

  33. Li, T., Jiang, B., Wu, D., Yin, X., Song, H.: Tracking multiple target cows’ ruminant mouth areas using optical flow and inter-frame difference methods. IEEE Access 7, 185520–185531 (2019)

    Article  Google Scholar 

  34. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995)

    Article  Google Scholar 

  35. Zhang, K., Zhang, L., Liu, Q., Zhang, D., Yang, M.-H.: Fast visual tracking via dense spatio-temporal context learning. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 127–141. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_9

    Chapter  Google Scholar 

  36. Yujuan, C., Dongjian, H., Yinxi, F., Huaibo, S.: Intelligent monitoring method of cow ruminant behavior based on video analysis technology. Int. J. Agric. Biol. Eng. 10(5), 194–202 (2017)

    Google Scholar 

  37. Chen, Y., He, D., Song, H.: Automatic monitoring method of cow ruminant behavior based on spatio-temporal context learning. Int. J. Agric. Biol. Eng. 11(4), 179–185 (2018)

    Google Scholar 

  38. Achour, B., Belkadi, M., Filali, I., Laghrouche, M., Lahdir, M.: Image analysis for individual identification and feeding behaviour monitoring of dairy cows based on convolutional neural networks (cnn). Biosyst. Eng. 198, 31–49 (2020)

    Article  Google Scholar 

  39. Li, D., Chen, Y., Zhang, K., Li, Z.: Mounting behaviour recognition for pigs based on deep learning. Sensors 19(22), 4924 (2019)

    Article  Google Scholar 

  40. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: a new learning scheme of feedforward neural networks. In: 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541), vol. 2, pp. 985–990. IEEE (2004)

    Google Scholar 

  41. Yang, Q., Xiao, D., Lin, S.: Feeding behavior recognition for group-housed pigs with the faster R-CNN. Comput. Electron. Agric. 155, 453–460 (2018)

    Article  Google Scholar 

  42. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  43. Ambriz-Vilchis, V., Jessop, N., Fawcett, R., Shaw, D., Macrae, A.: Comparison of rumination activity measured using rumination collars against direct visual observations and analysis of video recordings of dairy cows in commercial farm environments. J. Dairy Sci. 98(3), 1750–1758 (2015)

    Article  Google Scholar 

  44. Fenner, K., Yoon, S., White, P., Starling, M., McGreevy, P.: The effect of noseband tightening on horses’ behavior, eye temperature, and cardiac responses. PLoS ONE 11(5), e0154179 (2016)

    Article  Google Scholar 

  45. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  46. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  47. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  48. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  49. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  50. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  51. Donahue, J., et al.: Long-term recurrent convolutional networks for visual recognition and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2625–2634 (2015). https://doi.org/10.1109/CVPR.2015.7298878

  52. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. (2020)

    Google Scholar 

  53. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  54. Prechelt, L.: Early stopping - but when? In: Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524, pp. 55–69. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49430-8_3

    Chapter  Google Scholar 

  55. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  56. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  57. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

Download references

Acknowledgment

This research work is supported by LifeEye LLC. The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safa Ayadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ayadi, S., Ben Said, A., Jabbar, R., Aloulou, C., Chabbouh, A., Achballah, A.B. (2020). Dairy Cow Rumination Detection: A Deep Learning Approach. In: Jemili, I., Mosbah, M. (eds) Distributed Computing for Emerging Smart Networks. DiCES-N 2020. Communications in Computer and Information Science, vol 1348. Springer, Cham. https://doi.org/10.1007/978-3-030-65810-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65810-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65809-0

  • Online ISBN: 978-3-030-65810-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics